1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2024, Huawei Technologies Co, Ltd.
*
* Authors: Zhihao Cheng <chengzhihao1@huawei.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <sys/stat.h>
#include "linux_err.h"
#include "bitops.h"
#include "kmem.h"
#include "ubifs.h"
#include "defs.h"
#include "debug.h"
#include "key.h"
#include "misc.h"
#include "fsck.ubifs.h"
static void parse_node_header(int lnum, int offs, int len,
unsigned long long sqnum,
struct scanned_node *header)
{
header->exist = true;
header->lnum = lnum;
header->offs = offs;
header->len = len;
header->sqnum = sqnum;
}
static inline bool inode_can_be_encrypted(struct ubifs_info *c,
struct scanned_ino_node *ino_node)
{
if (!c->encrypted)
return false;
if (ino_node->is_xattr)
return false;
/* Only regular files, directories, and symlinks can be encrypted. */
if (S_ISREG(ino_node->mode) || S_ISDIR(ino_node->mode) ||
S_ISLNK(ino_node->mode))
return true;
return false;
}
/**
* parse_ino_node - parse inode node and check it's validity.
* @c: UBIFS file-system description object
* @lnum: logical eraseblock number
* @offs: the offset in LEB of the raw inode node
* @node: raw node
* @key: key of node scanned (if it has one)
* @ino_node: node used to store raw inode information
*
* This function checks the raw inode information, and stores inode
* information into @ino_node. Returns %true if the inode is valid,
* otherwise %false is returned.
*/
bool parse_ino_node(struct ubifs_info *c, int lnum, int offs, void *node,
union ubifs_key *key, struct scanned_ino_node *ino_node)
{
bool valid = false;
int data_len, node_len;
unsigned int flags;
unsigned long long sqnum;
struct ubifs_ch *ch = (struct ubifs_ch *)node;
struct ubifs_ino_node *ino = (struct ubifs_ino_node *)node;
ino_t inum = key_inum(c, key);
if (!inum || inum > INUM_WATERMARK) {
dbg_fsck("bad inode node(bad inum %lu) at %d:%d, in %s",
inum, lnum, offs, c->dev_name);
goto out;
}
if (ch->node_type != key_type(c, key)) {
dbg_fsck("bad inode node %lu(inconsistent node type %d vs key_type %d) at %d:%d, in %s",
inum, ch->node_type, key_type(c, key),
lnum, offs, c->dev_name);
goto out;
}
node_len = le32_to_cpu(ch->len);
sqnum = le64_to_cpu(ch->sqnum);
key_copy(c, key, &ino_node->key);
flags = le32_to_cpu(ino->flags);
data_len = le32_to_cpu(ino->data_len);
ino_node->is_xattr = !!(flags & UBIFS_XATTR_FL) ? 1 : 0;
ino_node->is_encrypted = !!(flags & UBIFS_CRYPT_FL) ? 1 : 0;
ino_node->mode = le32_to_cpu(ino->mode);
ino_node->nlink = le32_to_cpu(ino->nlink);
ino_node->xcnt = le32_to_cpu(ino->xattr_cnt);
ino_node->xsz = le32_to_cpu(ino->xattr_size);
ino_node->xnms = le32_to_cpu(ino->xattr_names);
ino_node->size = le64_to_cpu(ino->size);
if (inum == UBIFS_ROOT_INO && !S_ISDIR(ino_node->mode)) {
dbg_fsck("bad inode node %lu(root inode is not dir, tyoe %u) at %d:%d, in %s",
inum, ino_node->mode & S_IFMT, lnum, offs, c->dev_name);
goto out;
}
if (ino_node->size > c->max_inode_sz) {
dbg_fsck("bad inode node %lu(size %llu is too large) at %d:%d, in %s",
inum, ino_node->size, lnum, offs, c->dev_name);
goto out;
}
if (le16_to_cpu(ino->compr_type) >= UBIFS_COMPR_TYPES_CNT) {
dbg_fsck("bad inode node %lu(unknown compression type %d) at %d:%d, in %s",
inum, le16_to_cpu(ino->compr_type), lnum, offs,
c->dev_name);
goto out;
}
if (ino_node->xnms + ino_node->xcnt > XATTR_LIST_MAX) {
dbg_fsck("bad inode node %lu(too big xnames %u xcount %u) at %d:%d, in %s",
inum, ino_node->xnms, ino_node->xcnt,
lnum, offs, c->dev_name);
goto out;
}
if (data_len < 0 || data_len > UBIFS_MAX_INO_DATA) {
dbg_fsck("bad inode node %lu(invalid data len %d) at %d:%d, in %s",
inum, data_len, lnum, offs, c->dev_name);
goto out;
}
if (UBIFS_INO_NODE_SZ + data_len != node_len) {
dbg_fsck("bad inode node %lu(inconsistent data len %d vs node len %d) at %d:%d, in %s",
inum, data_len, node_len, lnum, offs, c->dev_name);
goto out;
}
if (ino_node->is_xattr) {
if (!S_ISREG(ino_node->mode)) {
dbg_fsck("bad inode node %lu(bad type %u for xattr) at %d:%d, in %s",
inum, ino_node->mode & S_IFMT,
lnum, offs, c->dev_name);
goto out;
}
if (data_len != ino_node->size) {
dbg_fsck("bad inode node %lu(inconsistent data_len %d vs size %llu for xattr) at %d:%d, in %s",
inum, data_len, ino_node->size,
lnum, offs, c->dev_name);
goto out;
}
if (ino_node->xcnt || ino_node->xsz || ino_node->xnms) {
dbg_fsck("bad inode node %lu(non zero xattr count %u xattr size %u xattr names %u for xattr) at %d:%d, in %s",
inum, ino_node->xcnt, ino_node->xsz,
ino_node->xnms, lnum, offs, c->dev_name);
goto out;
}
}
switch (ino_node->mode & S_IFMT) {
case S_IFREG:
if (!ino_node->is_xattr && data_len != 0) {
dbg_fsck("bad inode node %lu(bad data len %d for reg file) at %d:%d, in %s",
inum, data_len, lnum, offs, c->dev_name);
goto out;
}
break;
case S_IFDIR:
if (data_len != 0) {
dbg_fsck("bad inode node %lu(bad data len %d for dir file) at %d:%d, in %s",
inum, data_len, lnum, offs, c->dev_name);
goto out;
}
break;
case S_IFLNK:
if (data_len == 0) {
/*
* For encryption enabled or selinux enabled situation,
* uninitialized inode with xattrs could be written
* before ubifs_jnl_update(). If the dent node is
* written successfully but the initialized inode is
* not written, ubifs_iget() will get bad symlink inode
* with 'ui->data_len = 0'. Similar phenomenon can also
* occur for block/char dev creation.
* Just drop the inode node when above class of
* exceptions are found.
*/
dbg_fsck("bad symlink inode node %lu(bad data len %d) at %d:%d, in %s",
inum, data_len, lnum, offs, c->dev_name);
goto out;
}
break;
case S_IFBLK:
fallthrough;
case S_IFCHR:
{
union ubifs_dev_desc *dev = (union ubifs_dev_desc *)ino->data;
int sz_new = sizeof(dev->new), sz_huge = sizeof(dev->huge);
if (data_len != sz_new && data_len != sz_huge) {
dbg_fsck("bad inode node %lu(bad data len %d for char/block file, expect %d or %d) at %d:%d, in %s",
inum, data_len, sz_new, sz_huge, lnum,
offs, c->dev_name);
goto out;
}
break;
}
case S_IFSOCK:
fallthrough;
case S_IFIFO:
if (data_len != 0) {
dbg_fsck("bad inode node %lu(bad data len %d for fifo/sock file) at %d:%d, in %s",
inum, data_len, lnum, offs, c->dev_name);
goto out;
}
break;
default:
/* invalid file type. */
dbg_fsck("bad inode node %lu(unknown type %u) at %d:%d, in %s",
inum, ino_node->mode & S_IFMT, lnum, offs, c->dev_name);
goto out;
}
if (ino_node->is_encrypted && !inode_can_be_encrypted(c, ino_node)) {
dbg_fsck("bad inode node %lu(encrypted but cannot be encrypted, type %u, is_xattr %d, fs_encrypted %d) at %d:%d, in %s",
inum, ino_node->mode & S_IFMT, ino_node->is_xattr,
c->encrypted, lnum, offs, c->dev_name);
goto out;
}
valid = true;
parse_node_header(lnum, offs, node_len, sqnum, &ino_node->header);
out:
return valid;
}
/**
* parse_dent_node - parse dentry node and check it's validity.
* @c: UBIFS file-system description object
* @lnum: logical eraseblock number
* @offs: the offset in LEB of the raw inode node
* @node: raw node
* @key: key of node scanned (if it has one)
* @dent_node: node used to store raw dentry information
*
* This function checks the raw dentry/(xattr entry) information, and
* stores dentry/(xattr entry) information into @dent_node. Returns
* %true if the entry is valid, otherwise %false is returned.
*/
bool parse_dent_node(struct ubifs_info *c, int lnum, int offs, void *node,
union ubifs_key *key, struct scanned_dent_node *dent_node)
{
bool valid = false;
int node_len, nlen;
unsigned long long sqnum;
struct ubifs_ch *ch = (struct ubifs_ch *)node;
struct ubifs_dent_node *dent = (struct ubifs_dent_node *)node;
int key_type = key_type_flash(c, dent->key);
ino_t inum;
nlen = le16_to_cpu(dent->nlen);
node_len = le32_to_cpu(ch->len);
sqnum = le64_to_cpu(ch->sqnum);
inum = le64_to_cpu(dent->inum);
if (node_len != nlen + UBIFS_DENT_NODE_SZ + 1 ||
dent->type >= UBIFS_ITYPES_CNT ||
nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
(key_type == UBIFS_XENT_KEY &&
strnlen((const char *)dent->name, nlen) != nlen) ||
inum > INUM_WATERMARK || key_type != ch->node_type) {
dbg_fsck("bad %s node(len %d nlen %d type %d inum %lu key_type %d node_type %d) at %d:%d, in %s",
ch->node_type == UBIFS_XENT_NODE ? "xattr entry" : "directory entry",
node_len, nlen, dent->type, inum, key_type,
ch->node_type, lnum, offs, c->dev_name);
goto out;
}
key_copy(c, key, &dent_node->key);
dent_node->can_be_found = false;
dent_node->type = dent->type;
dent_node->nlen = nlen;
memcpy(dent_node->name, dent->name, nlen);
dent_node->name[nlen] = '\0';
dent_node->inum = inum;
valid = true;
parse_node_header(lnum, offs, node_len, sqnum, &dent_node->header);
out:
return valid;
}
/**
* parse_data_node - parse data node and check it's validity.
* @c: UBIFS file-system description object
* @lnum: logical eraseblock number
* @offs: the offset in LEB of the raw data node
* @node: raw node
* @key: key of node scanned (if it has one)
* @ino_node: node used to store raw data information
*
* This function checks the raw data node information, and stores
* data node information into @data_node. Returns %true if the data
* node is valid, otherwise %false is returned.
*/
bool parse_data_node(struct ubifs_info *c, int lnum, int offs, void *node,
union ubifs_key *key, struct scanned_data_node *data_node)
{
bool valid = false;
int node_len;
unsigned long long sqnum;
struct ubifs_ch *ch = (struct ubifs_ch *)node;
struct ubifs_data_node *dn = (struct ubifs_data_node *)node;
ino_t inum = key_inum(c, key);
if (ch->node_type != key_type(c, key)) {
dbg_fsck("bad data node(inconsistent node type %d vs key_type %d) at %d:%d, in %s",
ch->node_type, key_type(c, key),
lnum, offs, c->dev_name);
goto out;
}
if (!inum || inum > INUM_WATERMARK) {
dbg_fsck("bad data node(bad inum %lu) at %d:%d, in %s",
inum, lnum, offs, c->dev_name);
goto out;
}
node_len = le32_to_cpu(ch->len);
sqnum = le64_to_cpu(ch->sqnum);
key_copy(c, key, &data_node->key);
data_node->size = le32_to_cpu(dn->size);
if (!data_node->size || data_node->size > UBIFS_BLOCK_SIZE) {
dbg_fsck("bad data node(invalid size %u) at %d:%d, in %s",
data_node->size, lnum, offs, c->dev_name);
goto out;
}
if (le16_to_cpu(dn->compr_type) >= UBIFS_COMPR_TYPES_CNT) {
dbg_fsck("bad data node(invalid compression type %d) at %d:%d, in %s",
le16_to_cpu(dn->compr_type), lnum, offs, c->dev_name);
goto out;
}
valid = true;
parse_node_header(lnum, offs, node_len, sqnum, &data_node->header);
out:
return valid;
}
/**
* parse_trun_node - parse truncation node and check it's validity.
* @c: UBIFS file-system description object
* @lnum: logical eraseblock number
* @offs: the offset in LEB of the raw truncation node
* @node: raw node
* @key: key of node scanned (if it has one)
* @trun_node: node used to store raw truncation information
*
* This function checks the raw truncation information, and stores
* truncation information into @trun_node. Returns %true if the
* truncation is valid, otherwise %false is returned.
*/
bool parse_trun_node(struct ubifs_info *c, int lnum, int offs, void *node,
union ubifs_key *key, struct scanned_trun_node *trun_node)
{
bool valid = false;
int node_len;
unsigned long long sqnum;
struct ubifs_ch *ch = (struct ubifs_ch *)node;
struct ubifs_trun_node *trun = (struct ubifs_trun_node *)node;
loff_t old_size = le64_to_cpu(trun->old_size);
loff_t new_size = le64_to_cpu(trun->new_size);
ino_t inum = le32_to_cpu(trun->inum);
if (!inum || inum > INUM_WATERMARK) {
dbg_fsck("bad truncation node(bad inum %lu) at %d:%d, in %s",
inum, lnum, offs, c->dev_name);
goto out;
}
node_len = le32_to_cpu(ch->len);
sqnum = le64_to_cpu(ch->sqnum);
trun_node->new_size = new_size;
if (old_size < 0 || old_size > c->max_inode_sz ||
new_size < 0 || new_size > c->max_inode_sz ||
old_size <= new_size) {
dbg_fsck("bad truncation node(new size %ld old size %ld inum %lu) at %d:%d, in %s",
new_size, old_size, inum, lnum, offs, c->dev_name);
goto out;
}
trun_key_init(c, key, inum);
valid = true;
parse_node_header(lnum, offs, node_len, sqnum, &trun_node->header);
out:
return valid;
}
/**
* insert_file_dentry - insert dentry according to scanned dent node.
* @file: file object
* @n_dent: scanned dent node
*
* Insert file dentry information. Returns zero in case of success, a
* negative error code in case of failure.
*/
static int insert_file_dentry(struct scanned_file *file,
struct scanned_dent_node *n_dent)
{
struct scanned_dent_node *dent;
struct rb_node **p, *parent = NULL;
p = &file->dent_nodes.rb_node;
while (*p) {
parent = *p;
dent = rb_entry(parent, struct scanned_dent_node, rb);
if (n_dent->header.sqnum < dent->header.sqnum)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
dent = kmalloc(sizeof(struct scanned_dent_node), GFP_KERNEL);
if (!dent)
return -ENOMEM;
*dent = *n_dent;
rb_link_node(&dent->rb, parent, p);
rb_insert_color(&dent->rb, &file->dent_nodes);
return 0;
}
/**
* update_file_data - insert/update data according to scanned data node.
* @c: UBIFS file-system description object
* @file: file object
* @n_dn: scanned data node
*
* Insert or update file data information. Returns zero in case of success,
* a negative error code in case of failure.
*/
static int update_file_data(struct ubifs_info *c, struct scanned_file *file,
struct scanned_data_node *n_dn)
{
int cmp;
struct scanned_data_node *dn, *o_dn = NULL;
struct rb_node **p, *parent = NULL;
p = &file->data_nodes.rb_node;
while (*p) {
parent = *p;
dn = rb_entry(parent, struct scanned_data_node, rb);
cmp = keys_cmp(c, &n_dn->key, &dn->key);
if (cmp < 0) {
p = &(*p)->rb_left;
} else if (cmp > 0) {
p = &(*p)->rb_right;
} else {
o_dn = dn;
break;
}
}
if (o_dn) {
/* found data node with same block no. */
if (o_dn->header.sqnum < n_dn->header.sqnum) {
o_dn->header = n_dn->header;
o_dn->size = n_dn->size;
}
return 0;
}
dn = kmalloc(sizeof(struct scanned_data_node), GFP_KERNEL);
if (!dn)
return -ENOMEM;
*dn = *n_dn;
INIT_LIST_HEAD(&dn->list);
rb_link_node(&dn->rb, parent, p);
rb_insert_color(&dn->rb, &file->data_nodes);
return 0;
}
/**
* update_file - update file information.
* @c: UBIFS file-system description object
* @file: file object
* @sn: scanned node
* @key_type: type of @sn
*
* Update inode/dent/truncation/data node information of @file. Returns
* zero in case of success, a negative error code in case of failure.
*/
static int update_file(struct ubifs_info *c, struct scanned_file *file,
struct scanned_node *sn, int key_type)
{
int err = 0;
switch (key_type) {
case UBIFS_INO_KEY:
{
struct scanned_ino_node *o_ino, *n_ino;
o_ino = &file->ino;
n_ino = (struct scanned_ino_node *)sn;
if (o_ino->header.exist && o_ino->header.sqnum > sn->sqnum)
goto out;
*o_ino = *n_ino;
break;
}
case UBIFS_DENT_KEY:
case UBIFS_XENT_KEY:
{
struct scanned_dent_node *dent = (struct scanned_dent_node *)sn;
dent->file = file;
err = insert_file_dentry(file, dent);
break;
}
case UBIFS_DATA_KEY:
{
struct scanned_data_node *dn = (struct scanned_data_node *)sn;
err = update_file_data(c, file, dn);
break;
}
case UBIFS_TRUN_KEY:
{
struct scanned_trun_node *o_trun, *n_trun;
o_trun = &file->trun;
n_trun = (struct scanned_trun_node *)sn;
if (o_trun->header.exist && o_trun->header.sqnum > sn->sqnum)
goto out;
*o_trun = *n_trun;
break;
}
default:
err = -EINVAL;
log_err(c, 0, "unknown key type %d", key_type);
}
out:
return err;
}
/**
* insert_or_update_file - insert or update file according to scanned node.
* @c: UBIFS file-system description object
* @file_tree: tree of all scanned files
* @sn: scanned node
* @key_type: key type of @sn
* @inum: inode number
*
* According to @sn, this function inserts file into the tree, or updates
* file information if it already exists in the tree. Returns zero in case
* of success, a negative error code in case of failure.
*/
int insert_or_update_file(struct ubifs_info *c, struct rb_root *file_tree,
struct scanned_node *sn, int key_type, ino_t inum)
{
int err;
struct scanned_file *file, *old_file = NULL;
struct rb_node **p, *parent = NULL;
p = &file_tree->rb_node;
while (*p) {
parent = *p;
file = rb_entry(parent, struct scanned_file, rb);
if (inum < file->inum) {
p = &(*p)->rb_left;
} else if (inum > file->inum) {
p = &(*p)->rb_right;
} else {
old_file = file;
break;
}
}
if (old_file)
return update_file(c, old_file, sn, key_type);
file = kzalloc(sizeof(struct scanned_file), GFP_KERNEL);
if (!file)
return -ENOMEM;
file->inum = inum;
file->dent_nodes = RB_ROOT;
file->data_nodes = RB_ROOT;
file->xattr_files = RB_ROOT;
INIT_LIST_HEAD(&file->list);
err = update_file(c, file, sn, key_type);
if (err) {
kfree(file);
return err;
}
rb_link_node(&file->rb, parent, p);
rb_insert_color(&file->rb, file_tree);
return 0;
}
/**
* destroy_file_content - destroy scanned data/dentry nodes in give file.
* @c: UBIFS file-system description object
* @file: file object
*
* Destroy all data/dentry nodes and xattrs attached to @file.
*/
void destroy_file_content(struct ubifs_info *c, struct scanned_file *file)
{
struct scanned_data_node *data_node;
struct scanned_dent_node *dent_node;
struct scanned_file *xattr_file;
struct rb_node *this;
this = rb_first(&file->data_nodes);
while (this) {
data_node = rb_entry(this, struct scanned_data_node, rb);
this = rb_next(this);
rb_erase(&data_node->rb, &file->data_nodes);
kfree(data_node);
}
this = rb_first(&file->dent_nodes);
while (this) {
dent_node = rb_entry(this, struct scanned_dent_node, rb);
this = rb_next(this);
rb_erase(&dent_node->rb, &file->dent_nodes);
kfree(dent_node);
}
this = rb_first(&file->xattr_files);
while (this) {
xattr_file = rb_entry(this, struct scanned_file, rb);
this = rb_next(this);
ubifs_assert(c, !rb_first(&xattr_file->xattr_files));
destroy_file_content(c, xattr_file);
rb_erase(&xattr_file->rb, &file->xattr_files);
kfree(xattr_file);
}
}
/**
* destroy_file_tree - destroy files from a given tree.
* @c: UBIFS file-system description object
* @file_tree: tree of all scanned files
*
* Destroy scanned files from a given tree.
*/
void destroy_file_tree(struct ubifs_info *c, struct rb_root *file_tree)
{
struct scanned_file *file;
struct rb_node *this;
this = rb_first(file_tree);
while (this) {
file = rb_entry(this, struct scanned_file, rb);
this = rb_next(this);
destroy_file_content(c, file);
rb_erase(&file->rb, file_tree);
kfree(file);
}
}
/**
* lookup_file - lookup file according to inode number.
* @file_tree: tree of all scanned files
* @inum: inode number
*
* This function lookups target file from @file_tree according to @inum.
*/
struct scanned_file *lookup_file(struct rb_root *file_tree, ino_t inum)
{
struct scanned_file *file;
struct rb_node *p;
p = file_tree->rb_node;
while (p) {
file = rb_entry(p, struct scanned_file, rb);
if (inum < file->inum)
p = p->rb_left;
else if (inum > file->inum)
p = p->rb_right;
else
return file;
}
return NULL;
}
/**
* insert_xattr_file - insert xattr file into file's subtree.
* @c: UBIFS file-system description object
* @xattr_file: xattr file
* @host_file: host file
*
* This inserts xattr file into its' host file's subtree.
*/
static void insert_xattr_file(struct ubifs_info *c,
struct scanned_file *xattr_file,
struct scanned_file *host_file)
{
struct scanned_file *tmp_xattr_file;
struct rb_node **p, *parent = NULL;
p = &host_file->xattr_files.rb_node;
while (*p) {
parent = *p;
tmp_xattr_file = rb_entry(parent, struct scanned_file, rb);
if (xattr_file->inum < tmp_xattr_file->inum) {
p = &(*p)->rb_left;
} else if (xattr_file->inum > tmp_xattr_file->inum) {
p = &(*p)->rb_right;
} else {
/* Impossible: Same xattr file is inserted twice. */
ubifs_assert(c, 0);
}
}
rb_link_node(&xattr_file->rb, parent, p);
rb_insert_color(&xattr_file->rb, &host_file->xattr_files);
}
/**
* file_is_valid - check whether the file is valid.
* @c: UBIFS file-system description object
* @file: file object
* @file_tree: tree of all scanned files
*
* This function checks whether given @file is valid, following checks will
* be performed:
* 1. All files have none-zero nlink inode, otherwise they are invalid.
* 2. The file type comes from inode and dentries should be consistent,
* inconsistent dentries will be deleted.
* 3. Directory type or xattr type files only have one dentry. Superfluous
* dentries with lower sequence number will be deleted.
* 4. Non-regular file doesn't have data nodes. Data nodes are deleted for
* non-regular file.
* 5. All files must have at least one dentries, except '/', '/' doesn't
* have dentries. Non '/' file is invalid if it doesn't have dentries.
* 6. Xattr files should have host inode, and host inode cannot be a xattr,
* otherwise they are invalid.
* 7. Encrypted files should have corresponding xattrs, otherwise they are
* invalid.
* Xattr file will be inserted into corresponding host file's subtree.
*
* Returns %true is @file is valid, otherwise %false is returned.
* Notice: All xattr files should be traversed before non-xattr files, because
* checking item 7 depends on it.
*/
bool file_is_valid(struct ubifs_info *c, struct scanned_file *file,
struct rb_root *file_tree)
{
int type;
struct rb_node *node;
struct scanned_file *parent_file = NULL;
struct scanned_dent_node *dent_node;
struct scanned_data_node *data_node;
LIST_HEAD(drop_list);
if (!file->ino.header.exist || !file->ino.nlink)
return false;
type = ubifs_get_dent_type(file->ino.mode);
/* Drop dentry nodes with inconsistent type. */
for (node = rb_first(&file->dent_nodes); node; node = rb_next(node)) {
int is_xattr = 0;
dent_node = rb_entry(node, struct scanned_dent_node, rb);
if (key_type(c, &dent_node->key) == UBIFS_XENT_KEY)
is_xattr = 1;
if (is_xattr != file->ino.is_xattr || type != dent_node->type)
list_add(&dent_node->list, &drop_list);
}
while (!list_empty(&drop_list)) {
dent_node = list_entry(drop_list.next, struct scanned_dent_node,
list);
list_del(&dent_node->list);
rb_erase(&dent_node->rb, &file->dent_nodes);
kfree(dent_node);
}
if (type != UBIFS_ITYPE_DIR && !file->ino.is_xattr)
goto check_data_nodes;
/*
* Make sure that directory/xattr type files only have one dentry.
* This work should be done in step 3, but file type could be unknown
* for lacking inode information at that time, so do it here.
*/
node = rb_first(&file->dent_nodes);
while (node) {
dent_node = rb_entry(node, struct scanned_dent_node, rb);
node = rb_next(node);
if (!node)
break;
rb_erase(&dent_node->rb, &file->dent_nodes);
kfree(dent_node);
}
check_data_nodes:
if (type == UBIFS_ITYPE_REG && !file->ino.is_xattr)
goto check_dent_node;
/*
* Make sure that non regular type files not have data/trun nodes.
* This work should be done in step 3, but file type could be unknown
* for lacking inode information at that time, so do it here.
*/
file->trun.header.exist = 0;
node = rb_first(&file->data_nodes);
while (node) {
data_node = rb_entry(node, struct scanned_data_node, rb);
node = rb_next(node);
rb_erase(&data_node->rb, &file->data_nodes);
kfree(data_node);
}
check_dent_node:
if (rb_first(&file->dent_nodes)) {
if (file->inum == UBIFS_ROOT_INO)
/* '/' has no dentries. */
return false;
node = rb_first(&file->dent_nodes);
dent_node = rb_entry(node, struct scanned_dent_node, rb);
parent_file = lookup_file(file_tree, key_inum(c, &dent_node->key));
} else {
/* Non-root files must have dentries. */
if (file->inum != UBIFS_ROOT_INO)
return false;
}
if (file->ino.is_xattr) {
if (!parent_file)
/* Host inode is not found. */
return false;
if (parent_file->ino.is_xattr)
/* Host cannot be a xattr file. */
return false;
insert_xattr_file(c, file, parent_file);
if (parent_file->ino.is_encrypted) {
int nlen = min(dent_node->nlen,
strlen(UBIFS_XATTR_NAME_ENCRYPTION_CONTEXT));
if (!strncmp(dent_node->name,
UBIFS_XATTR_NAME_ENCRYPTION_CONTEXT, nlen))
parent_file->has_encrypted_info = true;
}
} else {
if (parent_file && !S_ISDIR(parent_file->ino.mode))
/* Parent file should be directory. */
return false;
/*
* Since xattr files are checked in first round, so all
* non-xattr files's @has_encrypted_info fields have been
* initialized.
*/
if (file->ino.is_encrypted && !file->has_encrypted_info)
return false;
}
return true;
}
static bool dentry_is_reachable(struct ubifs_info *c,
struct scanned_dent_node *dent_node,
struct list_head *path_list,
struct rb_root *file_tree)
{
struct scanned_file *parent_file = NULL;
struct scanned_dent_node *dn, *parent_dent;
struct rb_node *p;
/* Check whether the path is cyclical. */
list_for_each_entry(dn, path_list, list) {
if (dn == dent_node)
return false;
}
/* Quick path, dentry has already been checked as reachable. */
if (dent_node->can_be_found)
return true;
dent_node->can_be_found = true;
list_add(&dent_node->list, path_list);
parent_file = lookup_file(file_tree, key_inum(c, &dent_node->key));
/* Parent dentry is not found, unreachable. */
if (!parent_file)
return false;
/* Parent dentry is '/', reachable. */
if (parent_file->inum == UBIFS_ROOT_INO)
return true;
p = rb_first(&parent_file->dent_nodes);
if (!p)
return false;
parent_dent = rb_entry(p, struct scanned_dent_node, rb);
return dentry_is_reachable(c, parent_dent, path_list, file_tree);
}
/**
* file_is_reachable - whether the file can be found from '/'.
* @c: UBIFS file-system description object
* @file: file object
* @file_tree: tree of all scanned files
*
* This function iterates all directory entries in given @file and checks
* whether each dentry is reachable. All unreachable directory entries will
* be removed.
*/
bool file_is_reachable(struct ubifs_info *c, struct scanned_file *file,
struct rb_root *file_tree)
{
struct rb_node *node;
struct scanned_dent_node *dent_node;
if (file->inum == UBIFS_ROOT_INO)
goto reachable;
retry:
for (node = rb_first(&file->dent_nodes); node; node = rb_next(node)) {
LIST_HEAD(path_list);
dent_node = rb_entry(node, struct scanned_dent_node, rb);
if (dentry_is_reachable(c, dent_node, &path_list, file_tree))
continue;
while (!list_empty(&path_list)) {
dent_node = list_entry(path_list.next,
struct scanned_dent_node, list);
dbg_fsck("remove unreachable dentry %s, in %s",
c->encrypted && !file->ino.is_xattr ?
"<encrypted>" : dent_node->name, c->dev_name);
list_del(&dent_node->list);
rb_erase(&dent_node->rb, &dent_node->file->dent_nodes);
kfree(dent_node);
}
/* Since dentry node is removed from rb-tree, rescan rb-tree. */
goto retry;
}
if (!rb_first(&file->dent_nodes)) {
dbg_fsck("file %lu is unreachable, in %s", file->inum, c->dev_name);
return false;
}
reachable:
dbg_fsck("file %lu is reachable, in %s", file->inum, c->dev_name);
return true;
}
|