1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2024, Huawei Technologies Co, Ltd.
*
* Authors: Zhihao Cheng <chengzhihao1@huawei.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <sys/stat.h>
#include "linux_err.h"
#include "bitops.h"
#include "kmem.h"
#include "ubifs.h"
#include "defs.h"
#include "debug.h"
#include "key.h"
#include "misc.h"
#include "fsck.ubifs.h"
static void parse_node_header(int lnum, int offs, int len,
unsigned long long sqnum,
struct scanned_node *header)
{
header->exist = true;
header->lnum = lnum;
header->offs = offs;
header->len = len;
header->sqnum = sqnum;
}
static inline bool inode_can_be_encrypted(struct ubifs_info *c,
struct scanned_ino_node *ino_node)
{
if (!c->encrypted)
return false;
if (ino_node->is_xattr)
return false;
/* Only regular files, directories, and symlinks can be encrypted. */
if (S_ISREG(ino_node->mode) || S_ISDIR(ino_node->mode) ||
S_ISLNK(ino_node->mode))
return true;
return false;
}
/**
* parse_ino_node - parse inode node and check it's validity.
* @c: UBIFS file-system description object
* @lnum: logical eraseblock number
* @offs: the offset in LEB of the raw inode node
* @node: raw node
* @key: key of node scanned (if it has one)
* @ino_node: node used to store raw inode information
*
* This function checks the raw inode information, and stores inode
* information into @ino_node. Returns %true if the inode is valid,
* otherwise %false is returned.
*/
bool parse_ino_node(struct ubifs_info *c, int lnum, int offs, void *node,
union ubifs_key *key, struct scanned_ino_node *ino_node)
{
bool valid = false;
int data_len, node_len;
unsigned int flags;
unsigned long long sqnum;
struct ubifs_ch *ch = (struct ubifs_ch *)node;
struct ubifs_ino_node *ino = (struct ubifs_ino_node *)node;
ino_t inum = key_inum(c, key);
if (!inum || inum > INUM_WATERMARK) {
dbg_fsck("bad inode node(bad inum %lu) at %d:%d, in %s",
inum, lnum, offs, c->dev_name);
goto out;
}
if (ch->node_type != key_type(c, key)) {
dbg_fsck("bad inode node %lu(inconsistent node type %d vs key_type %d) at %d:%d, in %s",
inum, ch->node_type, key_type(c, key),
lnum, offs, c->dev_name);
goto out;
}
node_len = le32_to_cpu(ch->len);
sqnum = le64_to_cpu(ch->sqnum);
key_copy(c, key, &ino_node->key);
flags = le32_to_cpu(ino->flags);
data_len = le32_to_cpu(ino->data_len);
ino_node->is_xattr = !!(flags & UBIFS_XATTR_FL) ? 1 : 0;
ino_node->is_encrypted = !!(flags & UBIFS_CRYPT_FL) ? 1 : 0;
ino_node->mode = le32_to_cpu(ino->mode);
ino_node->nlink = le32_to_cpu(ino->nlink);
ino_node->xcnt = le32_to_cpu(ino->xattr_cnt);
ino_node->xsz = le32_to_cpu(ino->xattr_size);
ino_node->xnms = le32_to_cpu(ino->xattr_names);
ino_node->size = le64_to_cpu(ino->size);
if (inum == UBIFS_ROOT_INO && !S_ISDIR(ino_node->mode)) {
dbg_fsck("bad inode node %lu(root inode is not dir, tyoe %u) at %d:%d, in %s",
inum, ino_node->mode & S_IFMT, lnum, offs, c->dev_name);
goto out;
}
if (ino_node->size > c->max_inode_sz) {
dbg_fsck("bad inode node %lu(size %llu is too large) at %d:%d, in %s",
inum, ino_node->size, lnum, offs, c->dev_name);
goto out;
}
if (le16_to_cpu(ino->compr_type) >= UBIFS_COMPR_TYPES_CNT) {
dbg_fsck("bad inode node %lu(unknown compression type %d) at %d:%d, in %s",
inum, le16_to_cpu(ino->compr_type), lnum, offs,
c->dev_name);
goto out;
}
if (ino_node->xnms + ino_node->xcnt > XATTR_LIST_MAX) {
dbg_fsck("bad inode node %lu(too big xnames %u xcount %u) at %d:%d, in %s",
inum, ino_node->xnms, ino_node->xcnt,
lnum, offs, c->dev_name);
goto out;
}
if (data_len < 0 || data_len > UBIFS_MAX_INO_DATA) {
dbg_fsck("bad inode node %lu(invalid data len %d) at %d:%d, in %s",
inum, data_len, lnum, offs, c->dev_name);
goto out;
}
if (UBIFS_INO_NODE_SZ + data_len != node_len) {
dbg_fsck("bad inode node %lu(inconsistent data len %d vs node len %d) at %d:%d, in %s",
inum, data_len, node_len, lnum, offs, c->dev_name);
goto out;
}
if (ino_node->is_xattr) {
if (!S_ISREG(ino_node->mode)) {
dbg_fsck("bad inode node %lu(bad type %u for xattr) at %d:%d, in %s",
inum, ino_node->mode & S_IFMT,
lnum, offs, c->dev_name);
goto out;
}
if (data_len != ino_node->size) {
dbg_fsck("bad inode node %lu(inconsistent data_len %d vs size %llu for xattr) at %d:%d, in %s",
inum, data_len, ino_node->size,
lnum, offs, c->dev_name);
goto out;
}
if (ino_node->xcnt || ino_node->xsz || ino_node->xnms) {
dbg_fsck("bad inode node %lu(non zero xattr count %u xattr size %u xattr names %u for xattr) at %d:%d, in %s",
inum, ino_node->xcnt, ino_node->xsz,
ino_node->xnms, lnum, offs, c->dev_name);
goto out;
}
}
switch (ino_node->mode & S_IFMT) {
case S_IFREG:
if (!ino_node->is_xattr && data_len != 0) {
dbg_fsck("bad inode node %lu(bad data len %d for reg file) at %d:%d, in %s",
inum, data_len, lnum, offs, c->dev_name);
goto out;
}
break;
case S_IFDIR:
if (data_len != 0) {
dbg_fsck("bad inode node %lu(bad data len %d for dir file) at %d:%d, in %s",
inum, data_len, lnum, offs, c->dev_name);
goto out;
}
break;
case S_IFLNK:
if (data_len == 0) {
/*
* For encryption enabled or selinux enabled situation,
* uninitialized inode with xattrs could be written
* before ubifs_jnl_update(). If the dent node is
* written successfully but the initialized inode is
* not written, ubifs_iget() will get bad symlink inode
* with 'ui->data_len = 0'. Similar phenomenon can also
* occur for block/char dev creation.
* Just drop the inode node when above class of
* exceptions are found.
*/
dbg_fsck("bad symlink inode node %lu(bad data len %d) at %d:%d, in %s",
inum, data_len, lnum, offs, c->dev_name);
goto out;
}
break;
case S_IFBLK:
fallthrough;
case S_IFCHR:
{
union ubifs_dev_desc *dev = (union ubifs_dev_desc *)ino->data;
int sz_new = sizeof(dev->new), sz_huge = sizeof(dev->huge);
if (data_len != sz_new && data_len != sz_huge) {
dbg_fsck("bad inode node %lu(bad data len %d for char/block file, expect %d or %d) at %d:%d, in %s",
inum, data_len, sz_new, sz_huge, lnum,
offs, c->dev_name);
goto out;
}
break;
}
case S_IFSOCK:
fallthrough;
case S_IFIFO:
if (data_len != 0) {
dbg_fsck("bad inode node %lu(bad data len %d for fifo/sock file) at %d:%d, in %s",
inum, data_len, lnum, offs, c->dev_name);
goto out;
}
break;
default:
/* invalid file type. */
dbg_fsck("bad inode node %lu(unknown type %u) at %d:%d, in %s",
inum, ino_node->mode & S_IFMT, lnum, offs, c->dev_name);
goto out;
}
if (ino_node->is_encrypted && !inode_can_be_encrypted(c, ino_node)) {
dbg_fsck("bad inode node %lu(encrypted but cannot be encrypted, type %u, is_xattr %d, fs_encrypted %d) at %d:%d, in %s",
inum, ino_node->mode & S_IFMT, ino_node->is_xattr,
c->encrypted, lnum, offs, c->dev_name);
goto out;
}
valid = true;
parse_node_header(lnum, offs, node_len, sqnum, &ino_node->header);
out:
return valid;
}
/**
* parse_dent_node - parse dentry node and check it's validity.
* @c: UBIFS file-system description object
* @lnum: logical eraseblock number
* @offs: the offset in LEB of the raw inode node
* @node: raw node
* @key: key of node scanned (if it has one)
* @dent_node: node used to store raw dentry information
*
* This function checks the raw dentry/(xattr entry) information, and
* stores dentry/(xattr entry) information into @dent_node. Returns
* %true if the entry is valid, otherwise %false is returned.
*/
bool parse_dent_node(struct ubifs_info *c, int lnum, int offs, void *node,
union ubifs_key *key, struct scanned_dent_node *dent_node)
{
bool valid = false;
int node_len, nlen;
unsigned long long sqnum;
struct ubifs_ch *ch = (struct ubifs_ch *)node;
struct ubifs_dent_node *dent = (struct ubifs_dent_node *)node;
int key_type = key_type_flash(c, dent->key);
ino_t inum;
nlen = le16_to_cpu(dent->nlen);
node_len = le32_to_cpu(ch->len);
sqnum = le64_to_cpu(ch->sqnum);
inum = le64_to_cpu(dent->inum);
if (node_len != nlen + UBIFS_DENT_NODE_SZ + 1 ||
dent->type >= UBIFS_ITYPES_CNT ||
nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
(key_type == UBIFS_XENT_KEY &&
strnlen((const char *)dent->name, nlen) != nlen) ||
inum > INUM_WATERMARK || key_type != ch->node_type) {
dbg_fsck("bad %s node(len %d nlen %d type %d inum %lu key_type %d node_type %d) at %d:%d, in %s",
ch->node_type == UBIFS_XENT_NODE ? "xattr entry" : "directory entry",
node_len, nlen, dent->type, inum, key_type,
ch->node_type, lnum, offs, c->dev_name);
goto out;
}
key_copy(c, key, &dent_node->key);
dent_node->can_be_found = false;
dent_node->type = dent->type;
dent_node->nlen = nlen;
memcpy(dent_node->name, dent->name, nlen);
dent_node->name[nlen] = '\0';
dent_node->inum = inum;
valid = true;
parse_node_header(lnum, offs, node_len, sqnum, &dent_node->header);
out:
return valid;
}
/**
* parse_data_node - parse data node and check it's validity.
* @c: UBIFS file-system description object
* @lnum: logical eraseblock number
* @offs: the offset in LEB of the raw data node
* @node: raw node
* @key: key of node scanned (if it has one)
* @ino_node: node used to store raw data information
*
* This function checks the raw data node information, and stores
* data node information into @data_node. Returns %true if the data
* node is valid, otherwise %false is returned.
*/
bool parse_data_node(struct ubifs_info *c, int lnum, int offs, void *node,
union ubifs_key *key, struct scanned_data_node *data_node)
{
bool valid = false;
int node_len;
unsigned long long sqnum;
struct ubifs_ch *ch = (struct ubifs_ch *)node;
struct ubifs_data_node *dn = (struct ubifs_data_node *)node;
ino_t inum = key_inum(c, key);
if (ch->node_type != key_type(c, key)) {
dbg_fsck("bad data node(inconsistent node type %d vs key_type %d) at %d:%d, in %s",
ch->node_type, key_type(c, key),
lnum, offs, c->dev_name);
goto out;
}
if (!inum || inum > INUM_WATERMARK) {
dbg_fsck("bad data node(bad inum %lu) at %d:%d, in %s",
inum, lnum, offs, c->dev_name);
goto out;
}
node_len = le32_to_cpu(ch->len);
sqnum = le64_to_cpu(ch->sqnum);
key_copy(c, key, &data_node->key);
data_node->size = le32_to_cpu(dn->size);
if (!data_node->size || data_node->size > UBIFS_BLOCK_SIZE) {
dbg_fsck("bad data node(invalid size %u) at %d:%d, in %s",
data_node->size, lnum, offs, c->dev_name);
goto out;
}
if (le16_to_cpu(dn->compr_type) >= UBIFS_COMPR_TYPES_CNT) {
dbg_fsck("bad data node(invalid compression type %d) at %d:%d, in %s",
le16_to_cpu(dn->compr_type), lnum, offs, c->dev_name);
goto out;
}
valid = true;
parse_node_header(lnum, offs, node_len, sqnum, &data_node->header);
out:
return valid;
}
/**
* parse_trun_node - parse truncation node and check it's validity.
* @c: UBIFS file-system description object
* @lnum: logical eraseblock number
* @offs: the offset in LEB of the raw truncation node
* @node: raw node
* @key: key of node scanned (if it has one)
* @trun_node: node used to store raw truncation information
*
* This function checks the raw truncation information, and stores
* truncation information into @trun_node. Returns %true if the
* truncation is valid, otherwise %false is returned.
*/
bool parse_trun_node(struct ubifs_info *c, int lnum, int offs, void *node,
union ubifs_key *key, struct scanned_trun_node *trun_node)
{
bool valid = false;
int node_len;
unsigned long long sqnum;
struct ubifs_ch *ch = (struct ubifs_ch *)node;
struct ubifs_trun_node *trun = (struct ubifs_trun_node *)node;
loff_t old_size = le64_to_cpu(trun->old_size);
loff_t new_size = le64_to_cpu(trun->new_size);
ino_t inum = le32_to_cpu(trun->inum);
if (!inum || inum > INUM_WATERMARK) {
dbg_fsck("bad truncation node(bad inum %lu) at %d:%d, in %s",
inum, lnum, offs, c->dev_name);
goto out;
}
node_len = le32_to_cpu(ch->len);
sqnum = le64_to_cpu(ch->sqnum);
trun_node->new_size = new_size;
if (old_size < 0 || old_size > c->max_inode_sz ||
new_size < 0 || new_size > c->max_inode_sz ||
old_size <= new_size) {
dbg_fsck("bad truncation node(new size %ld old size %ld inum %lu) at %d:%d, in %s",
new_size, old_size, inum, lnum, offs, c->dev_name);
goto out;
}
trun_key_init(c, key, inum);
valid = true;
parse_node_header(lnum, offs, node_len, sqnum, &trun_node->header);
out:
return valid;
}
|