aboutsummaryrefslogtreecommitdiff
path: root/tests/libutil/rbtree.c
blob: c430d67c4711103b5947be5e05925147112e9636 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/* SPDX-License-Identifier: GPL-3.0-or-later */
/*
 * rbtree.c
 *
 * Copyright (C) 2020 David Oberhollenzer <goliath@infraroot.at>
 */
#include "config.h"

#include "rbtree.h"
#include "../test.h"

static int key_compare(const void *ctx, const void *a, const void *b)
{
	(void)ctx;
	return *((const sqfs_s32 *)a) - *((const sqfs_s32 *)b);
}

static size_t count_nodes_dfs(rbtree_node_t *n)
{
	return 1 + (n->left == NULL ? 0 : count_nodes_dfs(n->left))
		+ (n->right == NULL ? 0 : count_nodes_dfs(n->right));
}

static size_t min_depth(rbtree_node_t *n)
{
	size_t lhs, rhs;

	if (n == NULL)
		return 0;

	lhs = min_depth(n->left) + 1;
	rhs = min_depth(n->right) + 1;

	return lhs < rhs ? lhs : rhs;
}

static size_t max_depth(rbtree_node_t *n)
{
	size_t lhs, rhs;

	if (n == NULL)
		return 0;

	lhs = min_depth(n->left) + 1;
	rhs = min_depth(n->right) + 1;

	return lhs > rhs ? lhs : rhs;
}

static size_t get_ref_black_depth(rbtree_t *rb)
{
	rbtree_node_t *n;
	size_t count = 0;

	for (n = rb->root; n != NULL; n = n->left) {
		if (!n->is_red)
			count += 1;
	}

	return count;
}

static void check_binary_tree_dfs(rbtree_node_t *n)
{
	const void *key = rbtree_node_key(n);
	const void *cmp;

	if (n->left != NULL) {
		cmp = rbtree_node_key(n->left);
		TEST_ASSERT(key_compare(NULL, cmp, key) < 0);

		check_binary_tree_dfs(n->left);
	}

	if (n->right != NULL) {
		cmp = rbtree_node_key(n->right);
		TEST_ASSERT(key_compare(NULL, cmp, key) > 0);

		check_binary_tree_dfs(n->right);
	}
}

static void check_colors_dfs(rbtree_node_t *n)
{
	if (n->is_red) {
		TEST_ASSERT(n->left == NULL || !n->left->is_red);
		TEST_ASSERT(n->right == NULL || !n->right->is_red);
	}

	if (n->left != NULL)
		check_colors_dfs(n->left);

	if (n->right != NULL)
		check_colors_dfs(n->right);
}

static void check_black_depth_dfs(rbtree_node_t *n, size_t ref,
				  size_t counter)
{
	if (!n->is_red)
		counter += 1;

	if (n->left == NULL || n->right == NULL)
		TEST_EQUAL_UI(counter, ref);

	if (n->left != NULL)
		check_black_depth_dfs(n->left, ref, counter);

	if (n->right != NULL)
		check_black_depth_dfs(n->right, ref, counter);
}

static int check_subtrees_equal(const rbtree_node_t *lhs,
				const rbtree_node_t *rhs,
				size_t datasize)
{
	if (lhs == rhs)
		return -1;

	if (lhs->value_offset != rhs->value_offset)
		return -1;

	if ((lhs->is_red && !rhs->is_red) || (!lhs->is_red && rhs->is_red))
		return -1;

	if (memcmp(lhs->data, rhs->data, datasize) != 0)
		return -1;

	if (lhs->left == NULL) {
		if (rhs->left != NULL)
			return -1;
	} else {
		if (rhs->left == NULL)
			return -1;

		if (check_subtrees_equal(lhs->left, rhs->left, datasize))
			return -1;
	}

	if (lhs->right == NULL) {
		if (rhs->right != NULL)
			return -1;
	} else {
		if (rhs->right == NULL)
			return -1;

		if (check_subtrees_equal(lhs->right, rhs->right, datasize))
			return -1;
	}

	return 0;
}

int main(void)
{
	size_t count, blkdepth, mind, maxd;
	sqfs_s32 key, key2;
	rbtree_t rb, copy;
	rbtree_node_t *n;
	sqfs_u64 value;
	int ret;

	TEST_ASSERT(rbtree_init(&rb, sizeof(sqfs_s32),
				sizeof(sqfs_u64), key_compare) == 0);

	count = 0;

	for (key = -1000; key < 1000; ++key) {
		/* lookup of current key must fail prior to insert */
		TEST_NULL(rbtree_lookup(&rb, &key));

		/* previous key/value pairs must still be there */
		for (key2 = -1000; key2 < key; ++key2) {
			n = rbtree_lookup(&rb, &key2);
			TEST_NOT_NULL(n);
			value = *((sqfs_u64 *)rbtree_node_value(n));
			TEST_EQUAL_UI((sqfs_u64)(key2 + 10000), value);
		}

		/* insert key value pair */
		value = key + 10000;
		TEST_ASSERT(rbtree_insert(&rb, &key, &value) == 0);
		count += 1;

		/* check if the tree has the right number of nodes */
		TEST_EQUAL_UI(count_nodes_dfs(rb.root), count);

		/* check if it is still a binary tree */
		check_binary_tree_dfs(rb.root);

		/* root node must be black. Every red node
		   must have black children. */
		TEST_ASSERT(!rb.root->is_red);
		check_colors_dfs(rb.root);

		/* every path from the root to a leave must have
		   the same number of black nodes. */
		blkdepth = get_ref_black_depth(&rb);
		check_black_depth_dfs(rb.root, blkdepth, 0);

		/* longest root to leaf path must be at most
		   twice as long as the shortest. */
		mind = min_depth(rb.root);
		maxd = max_depth(rb.root);
		TEST_ASSERT(maxd <= mind * 2);

		/* lookup of current key must work after insert */
		n = rbtree_lookup(&rb, &key);
		TEST_NOT_NULL(n);
		value = *((sqfs_u64 *)rbtree_node_value(n));
		TEST_EQUAL_UI((sqfs_u64)(key + 10000), value);
	}

	/* test if copy works */
	ret = rbtree_copy(&rb, &copy);
	TEST_EQUAL_I(ret, 0);

	TEST_EQUAL_UI(rb.key_size, copy.key_size);
	TEST_EQUAL_UI(rb.key_size_padded, copy.key_size_padded);
	TEST_EQUAL_UI(rb.value_size, copy.value_size);
	TEST_ASSERT(rb.key_compare == copy.key_compare);
	TEST_ASSERT(rb.root != copy.root);

	ret = check_subtrees_equal(rb.root, copy.root,
				   rb.key_size_padded + rb.value_size);
	TEST_EQUAL_I(ret, 0);

	/* cleanup */
	rbtree_cleanup(&rb);
	rbtree_cleanup(&copy);
	return EXIT_SUCCESS;
}