summaryrefslogtreecommitdiff
path: root/ubifs-utils/mkfs.ubifs/mkfs.ubifs.c
diff options
context:
space:
mode:
authorDongsheng Yang <yangds.fnst@cn.fujitsu.com>2015-10-31 11:12:01 +0800
committerBrian Norris <computersforpeace@gmail.com>2015-11-11 14:38:40 -0800
commit7d81790ced345585b1e647ca9d0f6678e7062fa4 (patch)
tree02f61270c7a0fff7bb6b2e28f247a3d2fd6ff490 /ubifs-utils/mkfs.ubifs/mkfs.ubifs.c
parent344753f2aacb94d98ce238f81fc4a4b6ef6adea9 (diff)
mtd-utils: Restructure the mtd-utils source.
* There is no code modification in this commit, only moving * the files to proper place. The user tools looks a little messy as we place almost the all tools in the root directory of mtd-utils. To make it more clear, I propose to introduce the following structure for our source code. mtd-utils/ |-- lib |-- include |-- misc-utils |-- jffsX-utils |-- nand-utils |-- nor-utils |-- ubi-utils |-- ubifs-utils `-- tests Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Diffstat (limited to 'ubifs-utils/mkfs.ubifs/mkfs.ubifs.c')
-rw-r--r--ubifs-utils/mkfs.ubifs/mkfs.ubifs.c2324
1 files changed, 2324 insertions, 0 deletions
diff --git a/ubifs-utils/mkfs.ubifs/mkfs.ubifs.c b/ubifs-utils/mkfs.ubifs/mkfs.ubifs.c
new file mode 100644
index 0000000..ca17e2b
--- /dev/null
+++ b/ubifs-utils/mkfs.ubifs/mkfs.ubifs.c
@@ -0,0 +1,2324 @@
+/*
+ * Copyright (C) 2008 Nokia Corporation.
+ * Copyright (C) 2008 University of Szeged, Hungary
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 51
+ * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Authors: Adrian Hunter
+ * Artem Bityutskiy
+ * Zoltan Sogor
+ */
+
+#define _XOPEN_SOURCE 500 /* For realpath() */
+
+#include "mkfs.ubifs.h"
+#include <crc32.h>
+#include "common.h"
+
+/* Size (prime number) of hash table for link counting */
+#define HASH_TABLE_SIZE 10099
+
+/* The node buffer must allow for worst case compression */
+#define NODE_BUFFER_SIZE (UBIFS_DATA_NODE_SZ + \
+ UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR)
+
+/* Default time granularity in nanoseconds */
+#define DEFAULT_TIME_GRAN 1000000000
+
+/**
+ * struct idx_entry - index entry.
+ * @next: next index entry (NULL at end of list)
+ * @prev: previous index entry (NULL at beginning of list)
+ * @key: key
+ * @name: directory entry name used for sorting colliding keys by name
+ * @lnum: LEB number
+ * @offs: offset
+ * @len: length
+ *
+ * The index is recorded as a linked list which is sorted and used to create
+ * the bottom level of the on-flash index tree. The remaining levels of the
+ * index tree are each built from the level below.
+ */
+struct idx_entry {
+ struct idx_entry *next;
+ struct idx_entry *prev;
+ union ubifs_key key;
+ char *name;
+ int lnum;
+ int offs;
+ int len;
+};
+
+/**
+ * struct inum_mapping - inode number mapping for link counting.
+ * @next: next inum_mapping (NULL at end of list)
+ * @prev: previous inum_mapping (NULL at beginning of list)
+ * @dev: source device on which the source inode number resides
+ * @inum: source inode number of the file
+ * @use_inum: target inode number of the file
+ * @use_nlink: number of links
+ * @path_name: a path name of the file
+ * @st: struct stat object containing inode attributes which have to be used
+ * when the inode is being created (actually only UID, GID, access
+ * mode, major and minor device numbers)
+ *
+ * If a file has more than one hard link, then the number of hard links that
+ * exist in the source directory hierarchy must be counted to exclude the
+ * possibility that the file is linked from outside the source directory
+ * hierarchy.
+ *
+ * The inum_mappings are stored in a hash_table of linked lists.
+ */
+struct inum_mapping {
+ struct inum_mapping *next;
+ struct inum_mapping *prev;
+ dev_t dev;
+ ino_t inum;
+ ino_t use_inum;
+ unsigned int use_nlink;
+ char *path_name;
+ struct stat st;
+};
+
+/*
+ * Because we copy functions from the kernel, we use a subset of the UBIFS
+ * file-system description object struct ubifs_info.
+ */
+struct ubifs_info info_;
+static struct ubifs_info *c = &info_;
+static libubi_t ubi;
+
+/* Debug levels are: 0 (none), 1 (statistics), 2 (files) ,3 (more details) */
+int debug_level;
+int verbose;
+int yes;
+
+static char *root;
+static int root_len;
+static struct stat root_st;
+static char *output;
+static int out_fd;
+static int out_ubi;
+static int squash_owner;
+
+/* The 'head' (position) which nodes are written */
+static int head_lnum;
+static int head_offs;
+static int head_flags;
+
+/* The index list */
+static struct idx_entry *idx_list_first;
+static struct idx_entry *idx_list_last;
+static size_t idx_cnt;
+
+/* Global buffers */
+static void *leb_buf;
+static void *node_buf;
+static void *block_buf;
+
+/* Hash table for inode link counting */
+static struct inum_mapping **hash_table;
+
+/* Inode creation sequence number */
+static unsigned long long creat_sqnum;
+
+static const char *optstring = "d:r:m:o:D:yh?vVe:c:g:f:Fp:k:x:X:j:R:l:j:UQq";
+
+static const struct option longopts[] = {
+ {"root", 1, NULL, 'r'},
+ {"min-io-size", 1, NULL, 'm'},
+ {"leb-size", 1, NULL, 'e'},
+ {"max-leb-cnt", 1, NULL, 'c'},
+ {"output", 1, NULL, 'o'},
+ {"devtable", 1, NULL, 'D'},
+ {"yes", 0, NULL, 'y'},
+ {"help", 0, NULL, 'h'},
+ {"verbose", 0, NULL, 'v'},
+ {"version", 0, NULL, 'V'},
+ {"debug-level", 1, NULL, 'g'},
+ {"jrn-size", 1, NULL, 'j'},
+ {"reserved", 1, NULL, 'R'},
+ {"compr", 1, NULL, 'x'},
+ {"favor-percent", 1, NULL, 'X'},
+ {"fanout", 1, NULL, 'f'},
+ {"space-fixup", 0, NULL, 'F'},
+ {"keyhash", 1, NULL, 'k'},
+ {"log-lebs", 1, NULL, 'l'},
+ {"orph-lebs", 1, NULL, 'p'},
+ {"squash-uids" , 0, NULL, 'U'},
+ {NULL, 0, NULL, 0}
+};
+
+static const char *helptext =
+"Usage: mkfs.ubifs [OPTIONS] target\n"
+"Make a UBIFS file system image from an existing directory tree\n\n"
+"Examples:\n"
+"Build file system from directory /opt/img, writting the result in the ubifs.img file\n"
+"\tmkfs.ubifs -m 512 -e 128KiB -c 100 -r /opt/img ubifs.img\n"
+"The same, but writting directly to an UBI volume\n"
+"\tmkfs.ubifs -r /opt/img /dev/ubi0_0\n"
+"Creating an empty UBIFS filesystem on an UBI volume\n"
+"\tmkfs.ubifs /dev/ubi0_0\n\n"
+"Options:\n"
+"-r, -d, --root=DIR build file system from directory DIR\n"
+"-m, --min-io-size=SIZE minimum I/O unit size\n"
+"-e, --leb-size=SIZE logical erase block size\n"
+"-c, --max-leb-cnt=COUNT maximum logical erase block count\n"
+"-o, --output=FILE output to FILE\n"
+"-j, --jrn-size=SIZE journal size\n"
+"-R, --reserved=SIZE how much space should be reserved for the super-user\n"
+"-x, --compr=TYPE compression type - \"lzo\", \"favor_lzo\", \"zlib\" or\n"
+" \"none\" (default: \"lzo\")\n"
+"-X, --favor-percent may only be used with favor LZO compression and defines\n"
+" how many percent better zlib should compress to make\n"
+" mkfs.ubifs use zlib instead of LZO (default 20%)\n"
+"-f, --fanout=NUM fanout NUM (default: 8)\n"
+"-F, --space-fixup file-system free space has to be fixed up on first mount\n"
+" (requires kernel version 3.0 or greater)\n"
+"-k, --keyhash=TYPE key hash type - \"r5\" or \"test\" (default: \"r5\")\n"
+"-p, --orph-lebs=COUNT count of erase blocks for orphans (default: 1)\n"
+"-D, --devtable=FILE use device table FILE\n"
+"-U, --squash-uids squash owners making all files owned by root\n"
+"-l, --log-lebs=COUNT count of erase blocks for the log (used only for\n"
+" debugging)\n"
+"-y, --yes assume the answer is \"yes\" for all questions\n"
+"-v, --verbose verbose operation\n"
+"-V, --version display version information\n"
+"-g, --debug=LEVEL display debug information (0 - none, 1 - statistics,\n"
+" 2 - files, 3 - more details)\n"
+"-h, --help display this help text\n\n"
+"Note, SIZE is specified in bytes, but it may also be specified in Kilobytes,\n"
+"Megabytes, and Gigabytes if a KiB, MiB, or GiB suffix is used.\n\n"
+"If you specify \"lzo\" or \"zlib\" compressors, mkfs.ubifs will use this compressor\n"
+"for all data. The \"none\" disables any data compression. The \"favor_lzo\" is not\n"
+"really a separate compressor. It is just a method of combining \"lzo\" and \"zlib\"\n"
+"compressors. Namely, mkfs.ubifs tries to compress data with both \"lzo\" and \"zlib\"\n"
+"compressors, then it compares which compressor is better. If \"zlib\" compresses 20\n"
+"or more percent better than \"lzo\", mkfs.ubifs chooses \"lzo\", otherwise it chooses\n"
+"\"zlib\". The \"--favor-percent\" may specify arbitrary threshold instead of the\n"
+"default 20%.\n\n"
+"The -F parameter is used to set the \"fix up free space\" flag in the superblock,\n"
+"which forces UBIFS to \"fixup\" all the free space which it is going to use. This\n"
+"option is useful to work-around the problem of double free space programming: if the\n"
+"flasher program which flashes the UBI image is unable to skip NAND pages containing\n"
+"only 0xFF bytes, the effect is that some NAND pages are written to twice - first time\n"
+"when flashing the image and the second time when UBIFS is mounted and writes useful\n"
+"data there. A proper UBI-aware flasher should skip such NAND pages, though. Note, this\n"
+"flag may make the first mount very slow, because the \"free space fixup\" procedure\n"
+"takes time. This feature is supported by the Linux kernel starting from version 3.0.\n";
+
+/**
+ * make_path - make a path name from a directory and a name.
+ * @dir: directory path name
+ * @name: name
+ */
+static char *make_path(const char *dir, const char *name)
+{
+ char *s;
+
+ s = malloc(strlen(dir) + strlen(name) + 2);
+ if (!s)
+ return NULL;
+ strcpy(s, dir);
+ if (dir[strlen(dir) - 1] != '/')
+ strcat(s, "/");
+ strcat(s, name);
+ return s;
+}
+
+/**
+ * is_contained - determine if a file is beneath a directory.
+ * @file: file path name
+ * @dir: directory path name
+ *
+ * This function returns %1 if @file is accessible from the @dir directory and
+ * %0 otherwise. In case of error, returns %-1.
+ */
+static int is_contained(const char *file, const char *dir)
+{
+ char *real_file = NULL;
+ char *real_dir = NULL;
+ char *file_base, *copy;
+ int ret = -1;
+
+ /* Make a copy of the file path because 'dirname()' can modify it */
+ copy = strdup(file);
+ if (!copy)
+ return -1;
+ file_base = dirname(copy);
+
+ /* Turn the paths into the canonical form */
+ real_file = malloc(PATH_MAX);
+ if (!real_file)
+ goto out_free;
+
+ real_dir = malloc(PATH_MAX);
+ if (!real_dir)
+ goto out_free;
+
+ if (!realpath(file_base, real_file)) {
+ perror("Could not canonicalize file path");
+ goto out_free;
+ }
+ if (!realpath(dir, real_dir)) {
+ perror("Could not canonicalize directory");
+ goto out_free;
+ }
+
+ ret = !!strstr(real_file, real_dir);
+
+out_free:
+ free(copy);
+ free(real_file);
+ free(real_dir);
+ return ret;
+}
+
+/**
+ * calc_min_log_lebs - calculate the minimum number of log LEBs needed.
+ * @max_bud_bytes: journal size (buds only)
+ */
+static int calc_min_log_lebs(unsigned long long max_bud_bytes)
+{
+ int buds, log_lebs;
+ unsigned long long log_size;
+
+ buds = (max_bud_bytes + c->leb_size - 1) / c->leb_size;
+ log_size = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
+ log_size *= buds;
+ log_size += ALIGN(UBIFS_CS_NODE_SZ +
+ UBIFS_REF_NODE_SZ * (c->jhead_cnt + 2),
+ c->min_io_size);
+ log_lebs = (log_size + c->leb_size - 1) / c->leb_size;
+ log_lebs += 1;
+ return log_lebs;
+}
+
+/**
+ * add_space_overhead - add UBIFS overhead.
+ * @size: flash space which should be visible to the user
+ *
+ * UBIFS has overhead, and if we need to reserve @size bytes for the user data,
+ * we have to reserve more flash space, to compensate the overhead. This
+ * function calculates and returns the amount of physical flash space which
+ * should be reserved to provide @size bytes for the user.
+ */
+static long long add_space_overhead(long long size)
+{
+ int divisor, factor, f, max_idx_node_sz;
+
+ /*
+ * Do the opposite to what the 'ubifs_reported_space()' kernel UBIFS
+ * function does.
+ */
+ max_idx_node_sz = ubifs_idx_node_sz(c, c->fanout);
+ f = c->fanout > 3 ? c->fanout >> 1 : 2;
+ divisor = UBIFS_BLOCK_SIZE;
+ factor = UBIFS_MAX_DATA_NODE_SZ;
+ factor += (max_idx_node_sz * 3) / (f - 1);
+ size *= factor;
+ return size / divisor;
+}
+
+static int validate_options(void)
+{
+ int tmp;
+
+ if (!output)
+ return err_msg("no output file or UBI volume specified");
+ if (root) {
+ tmp = is_contained(output, root);
+ if (tmp < 0)
+ return err_msg("failed to perform output file root check");
+ else if (tmp)
+ return err_msg("output file cannot be in the UBIFS root "
+ "directory");
+ }
+ if (!is_power_of_2(c->min_io_size))
+ return err_msg("min. I/O unit size should be power of 2");
+ if (c->leb_size < c->min_io_size)
+ return err_msg("min. I/O unit cannot be larger than LEB size");
+ if (c->leb_size < UBIFS_MIN_LEB_SZ)
+ return err_msg("too small LEB size %d, minimum is %d",
+ c->leb_size, UBIFS_MIN_LEB_SZ);
+ if (c->leb_size % c->min_io_size)
+ return err_msg("LEB should be multiple of min. I/O units");
+ if (c->leb_size % 8)
+ return err_msg("LEB size has to be multiple of 8");
+ if (c->leb_size > UBIFS_MAX_LEB_SZ)
+ return err_msg("too large LEB size %d, maximum is %d",
+ c->leb_size, UBIFS_MAX_LEB_SZ);
+ if (c->max_leb_cnt < UBIFS_MIN_LEB_CNT)
+ return err_msg("too low max. count of LEBs, minimum is %d",
+ UBIFS_MIN_LEB_CNT);
+ if (c->fanout < UBIFS_MIN_FANOUT)
+ return err_msg("too low fanout, minimum is %d",
+ UBIFS_MIN_FANOUT);
+ tmp = c->leb_size - UBIFS_IDX_NODE_SZ;
+ tmp /= UBIFS_BRANCH_SZ + UBIFS_MAX_KEY_LEN;
+ if (c->fanout > tmp)
+ return err_msg("too high fanout, maximum is %d", tmp);
+ if (c->log_lebs < UBIFS_MIN_LOG_LEBS)
+ return err_msg("too few log LEBs, minimum is %d",
+ UBIFS_MIN_LOG_LEBS);
+ if (c->log_lebs >= c->max_leb_cnt - UBIFS_MIN_LEB_CNT)
+ return err_msg("too many log LEBs, maximum is %d",
+ c->max_leb_cnt - UBIFS_MIN_LEB_CNT);
+ if (c->orph_lebs < UBIFS_MIN_ORPH_LEBS)
+ return err_msg("too few orphan LEBs, minimum is %d",
+ UBIFS_MIN_ORPH_LEBS);
+ if (c->orph_lebs >= c->max_leb_cnt - UBIFS_MIN_LEB_CNT)
+ return err_msg("too many orphan LEBs, maximum is %d",
+ c->max_leb_cnt - UBIFS_MIN_LEB_CNT);
+ tmp = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs;
+ tmp += c->orph_lebs + 4;
+ if (tmp > c->max_leb_cnt)
+ return err_msg("too low max. count of LEBs, expected at "
+ "least %d", tmp);
+ tmp = calc_min_log_lebs(c->max_bud_bytes);
+ if (c->log_lebs < calc_min_log_lebs(c->max_bud_bytes))
+ return err_msg("too few log LEBs, expected at least %d", tmp);
+ if (c->rp_size >= ((long long)c->leb_size * c->max_leb_cnt) / 2)
+ return err_msg("too much reserved space %lld", c->rp_size);
+ return 0;
+}
+
+/**
+ * get_multiplier - convert size specifier to an integer multiplier.
+ * @str: the size specifier string
+ *
+ * This function parses the @str size specifier, which may be one of
+ * 'KiB', 'MiB', or 'GiB' into an integer multiplier. Returns positive
+ * size multiplier in case of success and %-1 in case of failure.
+ */
+static int get_multiplier(const char *str)
+{
+ if (!str)
+ return 1;
+
+ /* Remove spaces before the specifier */
+ while (*str == ' ' || *str == '\t')
+ str += 1;
+
+ if (!strcmp(str, "KiB"))
+ return 1024;
+ if (!strcmp(str, "MiB"))
+ return 1024 * 1024;
+ if (!strcmp(str, "GiB"))
+ return 1024 * 1024 * 1024;
+
+ return -1;
+}
+
+/**
+ * get_bytes - convert a string containing amount of bytes into an
+ * integer.
+ * @str: string to convert
+ *
+ * This function parses @str which may have one of 'KiB', 'MiB', or 'GiB' size
+ * specifiers. Returns positive amount of bytes in case of success and %-1 in
+ * case of failure.
+ */
+static long long get_bytes(const char *str)
+{
+ char *endp;
+ long long bytes = strtoull(str, &endp, 0);
+
+ if (endp == str || bytes < 0)
+ return err_msg("incorrect amount of bytes: \"%s\"", str);
+
+ if (*endp != '\0') {
+ int mult = get_multiplier(endp);
+
+ if (mult == -1)
+ return err_msg("bad size specifier: \"%s\" - "
+ "should be 'KiB', 'MiB' or 'GiB'", endp);
+ bytes *= mult;
+ }
+
+ return bytes;
+}
+/**
+ * open_ubi - open the UBI volume.
+ * @node: name of the UBI volume character device to fetch information about
+ *
+ * Returns %0 in case of success and %-1 in case of failure
+ */
+static int open_ubi(const char *node)
+{
+ struct stat st;
+
+ if (stat(node, &st) || !S_ISCHR(st.st_mode))
+ return -1;
+
+ ubi = libubi_open();
+ if (!ubi)
+ return -1;
+ if (ubi_get_vol_info(ubi, node, &c->vi))
+ return -1;
+ if (ubi_get_dev_info1(ubi, c->vi.dev_num, &c->di))
+ return -1;
+ return 0;
+}
+
+static int get_options(int argc, char**argv)
+{
+ int opt, i;
+ const char *tbl_file = NULL;
+ struct stat st;
+ char *endp;
+
+ c->fanout = 8;
+ c->orph_lebs = 1;
+ c->key_hash = key_r5_hash;
+ c->key_len = UBIFS_SK_LEN;
+ c->default_compr = UBIFS_COMPR_LZO;
+ c->favor_percent = 20;
+ c->lsave_cnt = 256;
+ c->leb_size = -1;
+ c->min_io_size = -1;
+ c->max_leb_cnt = -1;
+ c->max_bud_bytes = -1;
+ c->log_lebs = -1;
+
+ while (1) {
+ opt = getopt_long(argc, argv, optstring, longopts, &i);
+ if (opt == -1)
+ break;
+ switch (opt) {
+ case 'r':
+ case 'd':
+ root_len = strlen(optarg);
+ root = malloc(root_len + 2);
+ if (!root)
+ return err_msg("cannot allocate memory");
+
+ /*
+ * The further code expects '/' at the end of the root
+ * UBIFS directory on the host.
+ */
+ memcpy(root, optarg, root_len);
+ if (root[root_len - 1] != '/')
+ root[root_len++] = '/';
+ root[root_len] = 0;
+
+ /* Make sure the root directory exists */
+ if (stat(root, &st))
+ return sys_err_msg("bad root directory '%s'",
+ root);
+ break;
+ case 'm':
+ c->min_io_size = get_bytes(optarg);
+ if (c->min_io_size <= 0)
+ return err_msg("bad min. I/O size");
+ break;
+ case 'e':
+ c->leb_size = get_bytes(optarg);
+ if (c->leb_size <= 0)
+ return err_msg("bad LEB size");
+ break;
+ case 'c':
+ c->max_leb_cnt = get_bytes(optarg);
+ if (c->max_leb_cnt <= 0)
+ return err_msg("bad maximum LEB count");
+ break;
+ case 'o':
+ output = xstrdup(optarg);
+ break;
+ case 'D':
+ tbl_file = optarg;
+ if (stat(tbl_file, &st) < 0)
+ return sys_err_msg("bad device table file '%s'",
+ tbl_file);
+ break;
+ case 'y':
+ yes = 1;
+ break;
+ case 'h':
+ case '?':
+ printf("%s", helptext);
+ exit(0);
+ case 'v':
+ verbose = 1;
+ break;
+ case 'V':
+ common_print_version();
+ exit(0);
+ case 'g':
+ debug_level = strtol(optarg, &endp, 0);
+ if (*endp != '\0' || endp == optarg ||
+ debug_level < 0 || debug_level > 3)
+ return err_msg("bad debugging level '%s'",
+ optarg);
+ break;
+ case 'f':
+ c->fanout = strtol(optarg, &endp, 0);
+ if (*endp != '\0' || endp == optarg || c->fanout <= 0)
+ return err_msg("bad fanout %s", optarg);
+ break;
+ case 'F':
+ c->space_fixup = 1;
+ break;
+ case 'l':
+ c->log_lebs = strtol(optarg, &endp, 0);
+ if (*endp != '\0' || endp == optarg || c->log_lebs <= 0)
+ return err_msg("bad count of log LEBs '%s'",
+ optarg);
+ break;
+ case 'p':
+ c->orph_lebs = strtol(optarg, &endp, 0);
+ if (*endp != '\0' || endp == optarg ||
+ c->orph_lebs <= 0)
+ return err_msg("bad orphan LEB count '%s'",
+ optarg);
+ break;
+ case 'k':
+ if (strcmp(optarg, "r5") == 0) {
+ c->key_hash = key_r5_hash;
+ c->key_hash_type = UBIFS_KEY_HASH_R5;
+ } else if (strcmp(optarg, "test") == 0) {
+ c->key_hash = key_test_hash;
+ c->key_hash_type = UBIFS_KEY_HASH_TEST;
+ } else
+ return err_msg("bad key hash");
+ break;
+ case 'x':
+ if (strcmp(optarg, "favor_lzo") == 0)
+ c->favor_lzo = 1;
+ else if (strcmp(optarg, "zlib") == 0)
+ c->default_compr = UBIFS_COMPR_ZLIB;
+ else if (strcmp(optarg, "none") == 0)
+ c->default_compr = UBIFS_COMPR_NONE;
+ else if (strcmp(optarg, "lzo") != 0)
+ return err_msg("bad compressor name");
+ break;
+ case 'X':
+ c->favor_percent = strtol(optarg, &endp, 0);
+ if (*endp != '\0' || endp == optarg ||
+ c->favor_percent <= 0 || c->favor_percent >= 100)
+ return err_msg("bad favor LZO percent '%s'",
+ optarg);
+ break;
+ case 'j':
+ c->max_bud_bytes = get_bytes(optarg);
+ if (c->max_bud_bytes <= 0)
+ return err_msg("bad maximum amount of buds");
+ break;
+ case 'R':
+ c->rp_size = get_bytes(optarg);
+ if (c->rp_size < 0)
+ return err_msg("bad reserved bytes count");
+ break;
+ case 'U':
+ squash_owner = 1;
+ break;
+ }
+ }
+
+ if (optind != argc && !output)
+ output = xstrdup(argv[optind]);
+
+ if (!output)
+ return err_msg("not output device or file specified");
+
+ out_ubi = !open_ubi(output);
+
+ if (out_ubi) {
+ c->min_io_size = c->di.min_io_size;
+ c->leb_size = c->vi.leb_size;
+ if (c->max_leb_cnt == -1)
+ c->max_leb_cnt = c->vi.rsvd_lebs;
+ }
+
+ if (c->min_io_size == -1)
+ return err_msg("min. I/O unit was not specified "
+ "(use -h for help)");
+
+ if (c->leb_size == -1)
+ return err_msg("LEB size was not specified (use -h for help)");
+
+ if (c->max_leb_cnt == -1)
+ return err_msg("Maximum count of LEBs was not specified "
+ "(use -h for help)");
+
+ if (c->max_bud_bytes == -1) {
+ int lebs;
+
+ lebs = c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
+ lebs -= c->orph_lebs;
+ if (c->log_lebs != -1)
+ lebs -= c->log_lebs;
+ else
+ lebs -= UBIFS_MIN_LOG_LEBS;
+ /*
+ * We do not know lprops geometry so far, so assume minimum
+ * count of lprops LEBs.
+ */
+ lebs -= UBIFS_MIN_LPT_LEBS;
+ /* Make the journal about 12.5% of main area lebs */
+ c->max_bud_bytes = (lebs / 8) * (long long)c->leb_size;
+ /* Make the max journal size 8MiB */
+ if (c->max_bud_bytes > 8 * 1024 * 1024)
+ c->max_bud_bytes = 8 * 1024 * 1024;
+ if (c->max_bud_bytes < 4 * c->leb_size)
+ c->max_bud_bytes = 4 * c->leb_size;
+ }
+
+ if (c->log_lebs == -1) {
+ c->log_lebs = calc_min_log_lebs(c->max_bud_bytes);
+ c->log_lebs += 2;
+ }
+
+ if (c->min_io_size < 8)
+ c->min_io_size = 8;
+ c->rp_size = add_space_overhead(c->rp_size);
+
+ if (verbose) {
+ printf("mkfs.ubifs\n");
+ printf("\troot: %s\n", root);
+ printf("\tmin_io_size: %d\n", c->min_io_size);
+ printf("\tleb_size: %d\n", c->leb_size);
+ printf("\tmax_leb_cnt: %d\n", c->max_leb_cnt);
+ printf("\toutput: %s\n", output);
+ printf("\tjrn_size: %llu\n", c->max_bud_bytes);
+ printf("\treserved: %llu\n", c->rp_size);
+ switch (c->default_compr) {
+ case UBIFS_COMPR_LZO:
+ printf("\tcompr: lzo\n");
+ break;
+ case UBIFS_COMPR_ZLIB:
+ printf("\tcompr: zlib\n");
+ break;
+ case UBIFS_COMPR_NONE:
+ printf("\tcompr: none\n");
+ break;
+ }
+ printf("\tkeyhash: %s\n", (c->key_hash == key_r5_hash) ?
+ "r5" : "test");
+ printf("\tfanout: %d\n", c->fanout);
+ printf("\torph_lebs: %d\n", c->orph_lebs);
+ printf("\tspace_fixup: %d\n", c->space_fixup);
+ }
+
+ if (validate_options())
+ return -1;
+
+ if (tbl_file && parse_devtable(tbl_file))
+ return err_msg("cannot parse device table file '%s'", tbl_file);
+
+ return 0;
+}
+
+/**
+ * prepare_node - fill in the common header.
+ * @node: node
+ * @len: node length
+ */
+static void prepare_node(void *node, int len)
+{
+ uint32_t crc;
+ struct ubifs_ch *ch = node;
+
+ ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
+ ch->len = cpu_to_le32(len);
+ ch->group_type = UBIFS_NO_NODE_GROUP;
+ ch->sqnum = cpu_to_le64(++c->max_sqnum);
+ ch->padding[0] = ch->padding[1] = 0;
+ crc = mtd_crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
+ ch->crc = cpu_to_le32(crc);
+}
+
+/**
+ * write_leb - copy the image of a LEB to the output target.
+ * @lnum: LEB number
+ * @len: length of data in the buffer
+ * @buf: buffer (must be at least c->leb_size bytes)
+ */
+int write_leb(int lnum, int len, void *buf)
+{
+ off_t pos = (off_t)lnum * c->leb_size;
+
+ dbg_msg(3, "LEB %d len %d", lnum, len);
+ memset(buf + len, 0xff, c->leb_size - len);
+ if (out_ubi)
+ if (ubi_leb_change_start(ubi, out_fd, lnum, c->leb_size))
+ return sys_err_msg("ubi_leb_change_start failed");
+
+ if (lseek(out_fd, pos, SEEK_SET) != pos)
+ return sys_err_msg("lseek failed seeking %"PRIdoff_t, pos);
+
+ if (write(out_fd, buf, c->leb_size) != c->leb_size)
+ return sys_err_msg("write failed writing %d bytes at pos %"PRIdoff_t,
+ c->leb_size, pos);
+
+ return 0;
+}
+
+/**
+ * write_empty_leb - copy the image of an empty LEB to the output target.
+ * @lnum: LEB number
+ */
+static int write_empty_leb(int lnum)
+{
+ return write_leb(lnum, 0, leb_buf);
+}
+
+/**
+ * do_pad - pad a buffer to the minimum I/O size.
+ * @buf: buffer
+ * @len: buffer length
+ */
+static int do_pad(void *buf, int len)
+{
+ int pad_len, alen = ALIGN(len, 8), wlen = ALIGN(alen, c->min_io_size);
+ uint32_t crc;
+
+ memset(buf + len, 0xff, alen - len);
+ pad_len = wlen - alen;
+ dbg_msg(3, "len %d pad_len %d", len, pad_len);
+ buf += alen;
+ if (pad_len >= (int)UBIFS_PAD_NODE_SZ) {
+ struct ubifs_ch *ch = buf;
+ struct ubifs_pad_node *pad_node = buf;
+
+ ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
+ ch->node_type = UBIFS_PAD_NODE;
+ ch->group_type = UBIFS_NO_NODE_GROUP;
+ ch->padding[0] = ch->padding[1] = 0;
+ ch->sqnum = cpu_to_le64(0);
+ ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
+
+ pad_len -= UBIFS_PAD_NODE_SZ;
+ pad_node->pad_len = cpu_to_le32(pad_len);
+
+ crc = mtd_crc32(UBIFS_CRC32_INIT, buf + 8,
+ UBIFS_PAD_NODE_SZ - 8);
+ ch->crc = cpu_to_le32(crc);
+
+ memset(buf + UBIFS_PAD_NODE_SZ, 0, pad_len);
+ } else if (pad_len > 0)
+ memset(buf, UBIFS_PADDING_BYTE, pad_len);
+
+ return wlen;
+}
+
+/**
+ * write_node - write a node to a LEB.
+ * @node: node
+ * @len: node length
+ * @lnum: LEB number
+ */
+static int write_node(void *node, int len, int lnum)
+{
+ prepare_node(node, len);
+
+ memcpy(leb_buf, node, len);
+
+ len = do_pad(leb_buf, len);
+
+ return write_leb(lnum, len, leb_buf);
+}
+
+/**
+ * calc_dark - calculate LEB dark space size.
+ * @c: the UBIFS file-system description object
+ * @spc: amount of free and dirty space in the LEB
+ *
+ * This function calculates amount of dark space in an LEB which has @spc bytes
+ * of free and dirty space. Returns the calculations result.
+ *
+ * Dark space is the space which is not always usable - it depends on which
+ * nodes are written in which order. E.g., if an LEB has only 512 free bytes,
+ * it is dark space, because it cannot fit a large data node. So UBIFS cannot
+ * count on this LEB and treat these 512 bytes as usable because it is not true
+ * if, for example, only big chunks of uncompressible data will be written to
+ * the FS.
+ */
+static int calc_dark(struct ubifs_info *c, int spc)
+{
+ if (spc < c->dark_wm)
+ return spc;
+
+ /*
+ * If we have slightly more space then the dark space watermark, we can
+ * anyway safely assume it we'll be able to write a node of the
+ * smallest size there.
+ */
+ if (spc - c->dark_wm < (int)MIN_WRITE_SZ)
+ return spc - MIN_WRITE_SZ;
+
+ return c->dark_wm;
+}
+
+/**
+ * set_lprops - set the LEB property values for a LEB.
+ * @lnum: LEB number
+ * @offs: end offset of data in the LEB
+ * @flags: LEB property flags
+ */
+static void set_lprops(int lnum, int offs, int flags)
+{
+ int i = lnum - c->main_first, free, dirty;
+ int a = max_t(int, c->min_io_size, 8);
+
+ free = c->leb_size - ALIGN(offs, a);
+ dirty = c->leb_size - free - ALIGN(offs, 8);
+ dbg_msg(3, "LEB %d free %d dirty %d flags %d", lnum, free, dirty,
+ flags);
+ if (i < c->main_lebs) {
+ c->lpt[i].free = free;
+ c->lpt[i].dirty = dirty;
+ c->lpt[i].flags = flags;
+ }
+ c->lst.total_free += free;
+ c->lst.total_dirty += dirty;
+ if (flags & LPROPS_INDEX)
+ c->lst.idx_lebs += 1;
+ else {
+ int spc;
+
+ spc = free + dirty;
+ if (spc < c->dead_wm)
+ c->lst.total_dead += spc;
+ else
+ c->lst.total_dark += calc_dark(c, spc);
+ c->lst.total_used += c->leb_size - spc;
+ }
+}
+
+/**
+ * add_to_index - add a node key and position to the index.
+ * @key: node key
+ * @lnum: node LEB number
+ * @offs: node offset
+ * @len: node length
+ */
+static int add_to_index(union ubifs_key *key, char *name, int lnum, int offs,
+ int len)
+{
+ struct idx_entry *e;
+
+ dbg_msg(3, "LEB %d offs %d len %d", lnum, offs, len);
+ e = malloc(sizeof(struct idx_entry));
+ if (!e)
+ return err_msg("out of memory");
+ e->next = NULL;
+ e->prev = idx_list_last;
+ e->key = *key;
+ e->name = name;
+ e->lnum = lnum;
+ e->offs = offs;
+ e->len = len;
+ if (!idx_list_first)
+ idx_list_first = e;
+ if (idx_list_last)
+ idx_list_last->next = e;
+ idx_list_last = e;
+ idx_cnt += 1;
+ return 0;
+}
+
+/**
+ * flush_nodes - write the current head and move the head to the next LEB.
+ */
+static int flush_nodes(void)
+{
+ int len, err;
+
+ if (!head_offs)
+ return 0;
+ len = do_pad(leb_buf, head_offs);
+ err = write_leb(head_lnum, len, leb_buf);
+ if (err)
+ return err;
+ set_lprops(head_lnum, head_offs, head_flags);
+ head_lnum += 1;
+ head_offs = 0;
+ return 0;
+}
+
+/**
+ * reserve_space - reserve space for a node on the head.
+ * @len: node length
+ * @lnum: LEB number is returned here
+ * @offs: offset is returned here
+ */
+static int reserve_space(int len, int *lnum, int *offs)
+{
+ int err;
+
+ if (len > c->leb_size - head_offs) {
+ err = flush_nodes();
+ if (err)
+ return err;
+ }
+ *lnum = head_lnum;
+ *offs = head_offs;
+ head_offs += ALIGN(len, 8);
+ return 0;
+}
+
+/**
+ * add_node - write a node to the head.
+ * @key: node key
+ * @node: node
+ * @len: node length
+ */
+static int add_node(union ubifs_key *key, char *name, void *node, int len)
+{
+ int err, lnum, offs;
+
+ prepare_node(node, len);
+
+ err = reserve_space(len, &lnum, &offs);
+ if (err)
+ return err;
+
+ memcpy(leb_buf + offs, node, len);
+ memset(leb_buf + offs + len, 0xff, ALIGN(len, 8) - len);
+
+ add_to_index(key, name, lnum, offs, len);
+
+ return 0;
+}
+
+/**
+ * add_inode_with_data - write an inode.
+ * @st: stat information of source inode
+ * @inum: target inode number
+ * @data: inode data (for special inodes e.g. symlink path etc)
+ * @data_len: inode data length
+ * @flags: source inode flags
+ */
+static int add_inode_with_data(struct stat *st, ino_t inum, void *data,
+ unsigned int data_len, int flags)
+{
+ struct ubifs_ino_node *ino = node_buf;
+ union ubifs_key key;
+ int len, use_flags = 0;
+
+ if (c->default_compr != UBIFS_COMPR_NONE)
+ use_flags |= UBIFS_COMPR_FL;
+ if (flags & FS_COMPR_FL)
+ use_flags |= UBIFS_COMPR_FL;
+ if (flags & FS_SYNC_FL)
+ use_flags |= UBIFS_SYNC_FL;
+ if (flags & FS_IMMUTABLE_FL)
+ use_flags |= UBIFS_IMMUTABLE_FL;
+ if (flags & FS_APPEND_FL)
+ use_flags |= UBIFS_APPEND_FL;
+ if (flags & FS_DIRSYNC_FL && S_ISDIR(st->st_mode))
+ use_flags |= UBIFS_DIRSYNC_FL;
+
+ memset(ino, 0, UBIFS_INO_NODE_SZ);
+
+ ino_key_init(&key, inum);
+ ino->ch.node_type = UBIFS_INO_NODE;
+ key_write(&key, &ino->key);
+ ino->creat_sqnum = cpu_to_le64(creat_sqnum);
+ ino->size = cpu_to_le64(st->st_size);
+ ino->nlink = cpu_to_le32(st->st_nlink);
+ /*
+ * The time fields are updated assuming the default time granularity
+ * of 1 second. To support finer granularities, utime() would be needed.
+ */
+ ino->atime_sec = cpu_to_le64(st->st_atime);
+ ino->ctime_sec = cpu_to_le64(st->st_ctime);
+ ino->mtime_sec = cpu_to_le64(st->st_mtime);
+ ino->atime_nsec = 0;
+ ino->ctime_nsec = 0;
+ ino->mtime_nsec = 0;
+ ino->uid = cpu_to_le32(st->st_uid);
+ ino->gid = cpu_to_le32(st->st_gid);
+ ino->mode = cpu_to_le32(st->st_mode);
+ ino->flags = cpu_to_le32(use_flags);
+ ino->data_len = cpu_to_le32(data_len);
+ ino->compr_type = cpu_to_le16(c->default_compr);
+ if (data_len)
+ memcpy(&ino->data, data, data_len);
+
+ len = UBIFS_INO_NODE_SZ + data_len;
+
+ return add_node(&key, NULL, ino, len);
+}
+
+/**
+ * add_inode - write an inode.
+ * @st: stat information of source inode
+ * @inum: target inode number
+ * @flags: source inode flags
+ */
+static int add_inode(struct stat *st, ino_t inum, int flags)
+{
+ return add_inode_with_data(st, inum, NULL, 0, flags);
+}
+
+/**
+ * add_dir_inode - write an inode for a directory.
+ * @dir: source directory
+ * @inum: target inode number
+ * @size: target directory size
+ * @nlink: target directory link count
+ * @st: struct stat object describing attributes (except size and nlink) of the
+ * target inode to create
+ *
+ * Note, this function may be called with %NULL @dir, when the directory which
+ * is being created does not exist at the host file system, but is defined by
+ * the device table.
+ */
+static int add_dir_inode(DIR *dir, ino_t inum, loff_t size, unsigned int nlink,
+ struct stat *st)
+{
+ int fd, flags = 0;
+
+ st->st_size = size;
+ st->st_nlink = nlink;
+
+ if (dir) {
+ fd = dirfd(dir);
+ if (fd == -1)
+ return sys_err_msg("dirfd failed");
+ if (ioctl(fd, FS_IOC_GETFLAGS, &flags) == -1)
+ flags = 0;
+ }
+
+ return add_inode(st, inum, flags);
+}
+
+/**
+ * add_dev_inode - write an inode for a character or block device.
+ * @st: stat information of source inode
+ * @inum: target inode number
+ * @flags: source inode flags
+ */
+static int add_dev_inode(struct stat *st, ino_t inum, int flags)
+{
+ union ubifs_dev_desc dev;
+
+ dev.huge = cpu_to_le64(makedev(major(st->st_rdev), minor(st->st_rdev)));
+ return add_inode_with_data(st, inum, &dev, 8, flags);
+}
+
+/**
+ * add_symlink_inode - write an inode for a symbolic link.
+ * @path_name: path name of symbolic link inode itself (not the link target)
+ * @st: stat information of source inode
+ * @inum: target inode number
+ * @flags: source inode flags
+ */
+static int add_symlink_inode(const char *path_name, struct stat *st, ino_t inum,
+ int flags)
+{
+ char buf[UBIFS_MAX_INO_DATA + 2];
+ ssize_t len;
+
+ /* Take the symlink as is */
+ len = readlink(path_name, buf, UBIFS_MAX_INO_DATA + 1);
+ if (len <= 0)
+ return sys_err_msg("readlink failed for %s", path_name);
+ if (len > UBIFS_MAX_INO_DATA)
+ return err_msg("symlink too long for %s", path_name);
+
+ return add_inode_with_data(st, inum, buf, len, flags);
+}
+
+/**
+ * add_dent_node - write a directory entry node.
+ * @dir_inum: target inode number of directory
+ * @name: directory entry name
+ * @inum: target inode number of the directory entry
+ * @type: type of the target inode
+ */
+static int add_dent_node(ino_t dir_inum, const char *name, ino_t inum,
+ unsigned char type)
+{
+ struct ubifs_dent_node *dent = node_buf;
+ union ubifs_key key;
+ struct qstr dname;
+ char *kname;
+ int len;
+
+ dbg_msg(3, "%s ino %lu type %u dir ino %lu", name, (unsigned long)inum,
+ (unsigned int)type, (unsigned long)dir_inum);
+ memset(dent, 0, UBIFS_DENT_NODE_SZ);
+
+ dname.name = (void *)name;
+ dname.len = strlen(name);
+
+ dent->ch.node_type = UBIFS_DENT_NODE;
+
+ dent_key_init(c, &key, dir_inum, &dname);
+ key_write(&key, dent->key);
+ dent->inum = cpu_to_le64(inum);
+ dent->padding1 = 0;
+ dent->type = type;
+ dent->nlen = cpu_to_le16(dname.len);
+ memcpy(dent->name, dname.name, dname.len);
+ dent->name[dname.len] = '\0';
+
+ len = UBIFS_DENT_NODE_SZ + dname.len + 1;
+
+ kname = strdup(name);
+ if (!kname)
+ return err_msg("cannot allocate memory");
+
+ return add_node(&key, kname, dent, len);
+}
+
+/**
+ * lookup_inum_mapping - add an inode mapping for link counting.
+ * @dev: source device on which source inode number resides
+ * @inum: source inode number
+ */
+static struct inum_mapping *lookup_inum_mapping(dev_t dev, ino_t inum)
+{
+ struct inum_mapping *im;
+ unsigned int k;
+
+ k = inum % HASH_TABLE_SIZE;
+ im = hash_table[k];
+ while (im) {
+ if (im->dev == dev && im->inum == inum)
+ return im;
+ im = im->next;
+ }
+ im = malloc(sizeof(struct inum_mapping));
+ if (!im)
+ return NULL;
+ im->next = hash_table[k];
+ im->prev = NULL;
+ im->dev = dev;
+ im->inum = inum;
+ im->use_inum = 0;
+ im->use_nlink = 0;
+ if (hash_table[k])
+ hash_table[k]->prev = im;
+ hash_table[k] = im;
+ return im;
+}
+
+/**
+ * all_zero - does a buffer contain only zero bytes.
+ * @buf: buffer
+ * @len: buffer length
+ */
+static int all_zero(void *buf, int len)
+{
+ unsigned char *p = buf;
+
+ while (len--)
+ if (*p++ != 0)
+ return 0;
+ return 1;
+}
+
+/**
+ * add_file - write the data of a file and its inode to the output file.
+ * @path_name: source path name
+ * @st: source inode stat information
+ * @inum: target inode number
+ * @flags: source inode flags
+ */
+static int add_file(const char *path_name, struct stat *st, ino_t inum,
+ int flags)
+{
+ struct ubifs_data_node *dn = node_buf;
+ void *buf = block_buf;
+ loff_t file_size = 0;
+ ssize_t ret, bytes_read;
+ union ubifs_key key;
+ int fd, dn_len, err, compr_type, use_compr;
+ unsigned int block_no = 0;
+ size_t out_len;
+
+ fd = open(path_name, O_RDONLY | O_LARGEFILE);
+ if (fd == -1)
+ return sys_err_msg("failed to open file '%s'", path_name);
+ do {
+ /* Read next block */
+ bytes_read = 0;
+ do {
+ ret = read(fd, buf + bytes_read,
+ UBIFS_BLOCK_SIZE - bytes_read);
+ if (ret == -1) {
+ sys_err_msg("failed to read file '%s'",
+ path_name);
+ close(fd);
+ return 1;
+ }
+ bytes_read += ret;
+ } while (ret != 0 && bytes_read != UBIFS_BLOCK_SIZE);
+ if (bytes_read == 0)
+ break;
+ file_size += bytes_read;
+ /* Skip holes */
+ if (all_zero(buf, bytes_read)) {
+ block_no += 1;
+ continue;
+ }
+ /* Make data node */
+ memset(dn, 0, UBIFS_DATA_NODE_SZ);
+ data_key_init(&key, inum, block_no++);
+ dn->ch.node_type = UBIFS_DATA_NODE;
+ key_write(&key, &dn->key);
+ dn->size = cpu_to_le32(bytes_read);
+ out_len = NODE_BUFFER_SIZE - UBIFS_DATA_NODE_SZ;
+ if (c->default_compr == UBIFS_COMPR_NONE &&
+ (flags & FS_COMPR_FL))
+ use_compr = UBIFS_COMPR_LZO;
+ else
+ use_compr = c->default_compr;
+ compr_type = compress_data(buf, bytes_read, &dn->data,
+ &out_len, use_compr);
+ dn->compr_type = cpu_to_le16(compr_type);
+ dn_len = UBIFS_DATA_NODE_SZ + out_len;
+ /* Add data node to file system */
+ err = add_node(&key, NULL, dn, dn_len);
+ if (err) {
+ close(fd);
+ return err;
+ }
+ } while (ret != 0);
+ if (close(fd) == -1)
+ return sys_err_msg("failed to close file '%s'", path_name);
+ if (file_size != st->st_size)
+ return err_msg("file size changed during writing file '%s'",
+ path_name);
+ return add_inode(st, inum, flags);
+}
+
+/**
+ * add_non_dir - write a non-directory to the output file.
+ * @path_name: source path name
+ * @inum: target inode number is passed and returned here (due to link counting)
+ * @nlink: number of links if known otherwise zero
+ * @type: UBIFS inode type is returned here
+ * @st: struct stat object containing inode attributes which should be use when
+ * creating the UBIFS inode
+ */
+static int add_non_dir(const char *path_name, ino_t *inum, unsigned int nlink,
+ unsigned char *type, struct stat *st)
+{
+ int fd, flags = 0;
+
+ dbg_msg(2, "%s", path_name);
+
+ if (S_ISREG(st->st_mode)) {
+ fd = open(path_name, O_RDONLY);
+ if (fd == -1)
+ return sys_err_msg("failed to open file '%s'",
+ path_name);
+ if (ioctl(fd, FS_IOC_GETFLAGS, &flags) == -1)
+ flags = 0;
+ if (close(fd) == -1)
+ return sys_err_msg("failed to close file '%s'",
+ path_name);
+ *type = UBIFS_ITYPE_REG;
+ } else if (S_ISCHR(st->st_mode))
+ *type = UBIFS_ITYPE_CHR;
+ else if (S_ISBLK(st->st_mode))
+ *type = UBIFS_ITYPE_BLK;
+ else if (S_ISLNK(st->st_mode))
+ *type = UBIFS_ITYPE_LNK;
+ else if (S_ISSOCK(st->st_mode))
+ *type = UBIFS_ITYPE_SOCK;
+ else if (S_ISFIFO(st->st_mode))
+ *type = UBIFS_ITYPE_FIFO;
+ else
+ return err_msg("file '%s' has unknown inode type", path_name);
+
+ if (nlink)
+ st->st_nlink = nlink;
+ else if (st->st_nlink > 1) {
+ /*
+ * If the number of links is greater than 1, then add this file
+ * later when we know the number of links that we actually have.
+ * For now, we just put the inode mapping in the hash table.
+ */
+ struct inum_mapping *im;
+
+ im = lookup_inum_mapping(st->st_dev, st->st_ino);
+ if (!im)
+ return err_msg("out of memory");
+ if (im->use_nlink == 0) {
+ /* New entry */
+ im->use_inum = *inum;
+ im->use_nlink = 1;
+ im->path_name = malloc(strlen(path_name) + 1);
+ if (!im->path_name)
+ return err_msg("out of memory");
+ strcpy(im->path_name, path_name);
+ } else {
+ /* Existing entry */
+ *inum = im->use_inum;
+ im->use_nlink += 1;
+ /* Return unused inode number */
+ c->highest_inum -= 1;
+ }
+
+ memcpy(&im->st, st, sizeof(struct stat));
+ return 0;
+ } else
+ st->st_nlink = 1;
+
+ creat_sqnum = ++c->max_sqnum;
+
+ if (S_ISREG(st->st_mode))
+ return add_file(path_name, st, *inum, flags);
+ if (S_ISCHR(st->st_mode))
+ return add_dev_inode(st, *inum, flags);
+ if (S_ISBLK(st->st_mode))
+ return add_dev_inode(st, *inum, flags);
+ if (S_ISLNK(st->st_mode))
+ return add_symlink_inode(path_name, st, *inum, flags);
+ if (S_ISSOCK(st->st_mode))
+ return add_inode(st, *inum, flags);
+ if (S_ISFIFO(st->st_mode))
+ return add_inode(st, *inum, flags);
+
+ return err_msg("file '%s' has unknown inode type", path_name);
+}
+
+/**
+ * add_directory - write a directory tree to the output file.
+ * @dir_name: directory path name
+ * @dir_inum: UBIFS inode number of directory
+ * @st: directory inode statistics
+ * @non_existing: non-zero if this function is called for a directory which
+ * does not exist on the host file-system and it is being
+ * created because it is defined in the device table file.
+ */
+static int add_directory(const char *dir_name, ino_t dir_inum, struct stat *st,
+ int non_existing)
+{
+ struct dirent *entry;
+ DIR *dir = NULL;
+ int err = 0;
+ loff_t size = UBIFS_INO_NODE_SZ;
+ char *name = NULL;
+ unsigned int nlink = 2;
+ struct path_htbl_element *ph_elt;
+ struct name_htbl_element *nh_elt = NULL;
+ struct hashtable_itr *itr;
+ ino_t inum;
+ unsigned char type;
+ unsigned long long dir_creat_sqnum = ++c->max_sqnum;
+
+ dbg_msg(2, "%s", dir_name);
+ if (!non_existing) {
+ dir = opendir(dir_name);
+ if (dir == NULL)
+ return sys_err_msg("cannot open directory '%s'",
+ dir_name);
+ }
+
+ /*
+ * Check whether this directory contains files which should be
+ * added/changed because they were specified in the device table.
+ * @ph_elt will be non-zero if yes.
+ */
+ ph_elt = devtbl_find_path(dir_name + root_len - 1);
+
+ /*
+ * Before adding the directory itself, we have to iterate over all the
+ * entries the device table adds to this directory and create them.
+ */
+ for (; !non_existing;) {
+ struct stat dent_st;
+
+ errno = 0;
+ entry = readdir(dir);
+ if (!entry) {
+ if (errno == 0)
+ break;
+ sys_err_msg("error reading directory '%s'", dir_name);
+ err = -1;
+ break;
+ }
+
+ if (strcmp(".", entry->d_name) == 0)
+ continue;
+ if (strcmp("..", entry->d_name) == 0)
+ continue;
+
+ if (ph_elt)
+ /*
+ * This directory was referred to at the device table
+ * file. Check if this directory entry is referred at
+ * too.
+ */
+ nh_elt = devtbl_find_name(ph_elt, entry->d_name);
+
+ /*
+ * We are going to create the file corresponding to this
+ * directory entry (@entry->d_name). We use 'struct stat'
+ * object to pass information about file attributes (actually
+ * only about UID, GID, mode, major, and minor). Get attributes
+ * for this file from the UBIFS rootfs on the host.
+ */
+ free(name);
+ name = make_path(dir_name, entry->d_name);
+ if (lstat(name, &dent_st) == -1) {
+ sys_err_msg("lstat failed for file '%s'", name);
+ goto out_free;
+ }
+
+ if (squash_owner)
+ /*
+ * Squash UID/GID. But the device table may override
+ * this.
+ */
+ dent_st.st_uid = dent_st.st_gid = 0;
+
+ /*
+ * And if the device table describes the same file, override
+ * the attributes. However, this is not allowed for device node
+ * files.
+ */
+ if (nh_elt && override_attributes(&dent_st, ph_elt, nh_elt))
+ goto out_free;
+
+ inum = ++c->highest_inum;
+
+ if (S_ISDIR(dent_st.st_mode)) {
+ err = add_directory(name, inum, &dent_st, 0);
+ if (err)
+ goto out_free;
+ nlink += 1;
+ type = UBIFS_ITYPE_DIR;
+ } else {
+ err = add_non_dir(name, &inum, 0, &type, &dent_st);
+ if (err)
+ goto out_free;
+ }
+
+ err = add_dent_node(dir_inum, entry->d_name, inum, type);
+ if (err)
+ goto out_free;
+ size += ALIGN(UBIFS_DENT_NODE_SZ + strlen(entry->d_name) + 1,
+ 8);
+ }
+
+ /*
+ * OK, we have created all files in this directory (recursively), let's
+ * also create all files described in the device table. All t
+ */
+ nh_elt = first_name_htbl_element(ph_elt, &itr);
+ while (nh_elt) {
+ struct stat fake_st;
+
+ /*
+ * We prohibit creating regular files using the device table,
+ * the device table may only re-define attributes of regular
+ * files.
+ */
+ if (S_ISREG(nh_elt->mode)) {
+ err_msg("Bad device table entry %s/%s - it is "
+ "prohibited to create regular files "
+ "via device table",
+ strcmp(ph_elt->path, "/") ? ph_elt->path : "",
+ nh_elt->name);
+ goto out_free;
+ }
+
+ memcpy(&fake_st, &root_st, sizeof(struct stat));
+ fake_st.st_uid = nh_elt->uid;
+ fake_st.st_uid = nh_elt->uid;
+ fake_st.st_mode = nh_elt->mode;
+ fake_st.st_rdev = nh_elt->dev;
+ fake_st.st_nlink = 1;
+
+ free(name);
+ name = make_path(dir_name, nh_elt->name);
+ inum = ++c->highest_inum;
+
+ if (S_ISDIR(nh_elt->mode)) {
+ err = add_directory(name, inum, &fake_st, 1);
+ if (err)
+ goto out_free;
+ nlink += 1;
+ type = UBIFS_ITYPE_DIR;
+ } else {
+ err = add_non_dir(name, &inum, 0, &type, &fake_st);
+ if (err)
+ goto out_free;
+ }
+
+ err = add_dent_node(dir_inum, nh_elt->name, inum, type);
+ if (err)
+ goto out_free;
+ size += ALIGN(UBIFS_DENT_NODE_SZ + strlen(nh_elt->name) + 1, 8);
+
+ nh_elt = next_name_htbl_element(ph_elt, &itr);
+ }
+
+ creat_sqnum = dir_creat_sqnum;
+
+ err = add_dir_inode(dir, dir_inum, size, nlink, st);
+ if (err)
+ goto out_free;
+
+ free(name);
+ if (!non_existing && closedir(dir) == -1)
+ return sys_err_msg("error closing directory '%s'", dir_name);
+
+ return 0;
+
+out_free:
+ free(name);
+ if (!non_existing)
+ closedir(dir);
+ return -1;
+}
+
+/**
+ * add_multi_linked_files - write all the files for which we counted links.
+ */
+static int add_multi_linked_files(void)
+{
+ int i, err;
+
+ for (i = 0; i < HASH_TABLE_SIZE; i++) {
+ struct inum_mapping *im;
+ unsigned char type = 0;
+
+ for (im = hash_table[i]; im; im = im->next) {
+ dbg_msg(2, "%s", im->path_name);
+ err = add_non_dir(im->path_name, &im->use_inum,
+ im->use_nlink, &type, &im->st);
+ if (err)
+ return err;
+ }
+ }
+ return 0;
+}
+
+/**
+ * write_data - write the files and directories.
+ */
+static int write_data(void)
+{
+ int err;
+ mode_t mode = S_IFDIR | S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH;
+
+ if (root) {
+ err = stat(root, &root_st);
+ if (err)
+ return sys_err_msg("bad root file-system directory '%s'",
+ root);
+ } else {
+ root_st.st_mtime = time(NULL);
+ root_st.st_atime = root_st.st_ctime = root_st.st_mtime;
+ root_st.st_mode = mode;
+ }
+
+ head_flags = 0;
+ err = add_directory(root, UBIFS_ROOT_INO, &root_st, !root);
+ if (err)
+ return err;
+ err = add_multi_linked_files();
+ if (err)
+ return err;
+ return flush_nodes();
+}
+
+static int namecmp(const char *name1, const char *name2)
+{
+ size_t len1 = strlen(name1), len2 = strlen(name2);
+ size_t clen = (len1 < len2) ? len1 : len2;
+ int cmp;
+
+ cmp = memcmp(name1, name2, clen);
+ if (cmp)
+ return cmp;
+ return (len1 < len2) ? -1 : 1;
+}
+
+static int cmp_idx(const void *a, const void *b)
+{
+ const struct idx_entry *e1 = *(const struct idx_entry **)a;
+ const struct idx_entry *e2 = *(const struct idx_entry **)b;
+ int cmp;
+
+ cmp = keys_cmp(&e1->key, &e2->key);
+ if (cmp)
+ return cmp;
+ return namecmp(e1->name, e2->name);
+}
+
+/**
+ * add_idx_node - write an index node to the head.
+ * @node: index node
+ * @child_cnt: number of children of this index node
+ */
+static int add_idx_node(void *node, int child_cnt)
+{
+ int err, lnum, offs, len;
+
+ len = ubifs_idx_node_sz(c, child_cnt);
+
+ prepare_node(node, len);
+
+ err = reserve_space(len, &lnum, &offs);
+ if (err)
+ return err;
+
+ memcpy(leb_buf + offs, node, len);
+ memset(leb_buf + offs + len, 0xff, ALIGN(len, 8) - len);
+
+ c->old_idx_sz += ALIGN(len, 8);
+
+ dbg_msg(3, "at %d:%d len %d index size %llu", lnum, offs, len,
+ c->old_idx_sz);
+
+ /* The last index node written will be the root */
+ c->zroot.lnum = lnum;
+ c->zroot.offs = offs;
+ c->zroot.len = len;
+
+ return 0;
+}
+
+/**
+ * write_index - write out the index.
+ */
+static int write_index(void)
+{
+ size_t sz, i, cnt, idx_sz, pstep, bcnt;
+ struct idx_entry **idx_ptr, **p;
+ struct ubifs_idx_node *idx;
+ struct ubifs_branch *br;
+ int child_cnt = 0, j, level, blnum, boffs, blen, blast_len, err;
+
+ dbg_msg(1, "leaf node count: %zd", idx_cnt);
+
+ /* Reset the head for the index */
+ head_flags = LPROPS_INDEX;
+ /* Allocate index node */
+ idx_sz = ubifs_idx_node_sz(c, c->fanout);
+ idx = malloc(idx_sz);
+ if (!idx)
+ return err_msg("out of memory");
+ /* Make an array of pointers to sort the index list */
+ sz = idx_cnt * sizeof(struct idx_entry *);
+ if (sz / sizeof(struct idx_entry *) != idx_cnt) {
+ free(idx);
+ return err_msg("index is too big (%zu entries)", idx_cnt);
+ }
+ idx_ptr = malloc(sz);
+ if (!idx_ptr) {
+ free(idx);
+ return err_msg("out of memory - needed %zu bytes for index",
+ sz);
+ }
+ idx_ptr[0] = idx_list_first;
+ for (i = 1; i < idx_cnt; i++)
+ idx_ptr[i] = idx_ptr[i - 1]->next;
+ qsort(idx_ptr, idx_cnt, sizeof(struct idx_entry *), cmp_idx);
+ /* Write level 0 index nodes */
+ cnt = idx_cnt / c->fanout;
+ if (idx_cnt % c->fanout)
+ cnt += 1;
+ p = idx_ptr;
+ blnum = head_lnum;
+ boffs = head_offs;
+ for (i = 0; i < cnt; i++) {
+ /*
+ * Calculate the child count. All index nodes are created full
+ * except for the last index node on each row.
+ */
+ if (i == cnt - 1) {
+ child_cnt = idx_cnt % c->fanout;
+ if (child_cnt == 0)
+ child_cnt = c->fanout;
+ } else
+ child_cnt = c->fanout;
+ memset(idx, 0, idx_sz);
+ idx->ch.node_type = UBIFS_IDX_NODE;
+ idx->child_cnt = cpu_to_le16(child_cnt);
+ idx->level = cpu_to_le16(0);
+ for (j = 0; j < child_cnt; j++, p++) {
+ br = ubifs_idx_branch(c, idx, j);
+ key_write_idx(&(*p)->key, &br->key);
+ br->lnum = cpu_to_le32((*p)->lnum);
+ br->offs = cpu_to_le32((*p)->offs);
+ br->len = cpu_to_le32((*p)->len);
+ }
+ add_idx_node(idx, child_cnt);
+ }
+ /* Write level 1 index nodes and above */
+ level = 0;
+ pstep = 1;
+ while (cnt > 1) {
+ /*
+ * 'blast_len' is the length of the last index node in the level
+ * below.
+ */
+ blast_len = ubifs_idx_node_sz(c, child_cnt);
+ /* 'bcnt' is the number of index nodes in the level below */
+ bcnt = cnt;
+ /* 'cnt' is the number of index nodes in this level */
+ cnt = (cnt + c->fanout - 1) / c->fanout;
+ if (cnt == 0)
+ cnt = 1;
+ level += 1;
+ /*
+ * The key of an index node is the same as the key of its first
+ * child. Thus we can get the key by stepping along the bottom
+ * level 'p' with an increasing large step 'pstep'.
+ */
+ p = idx_ptr;
+ pstep *= c->fanout;
+ for (i = 0; i < cnt; i++) {
+ /*
+ * Calculate the child count. All index nodes are
+ * created full except for the last index node on each
+ * row.
+ */
+ if (i == cnt - 1) {
+ child_cnt = bcnt % c->fanout;
+ if (child_cnt == 0)
+ child_cnt = c->fanout;
+ } else
+ child_cnt = c->fanout;
+ memset(idx, 0, idx_sz);
+ idx->ch.node_type = UBIFS_IDX_NODE;
+ idx->child_cnt = cpu_to_le16(child_cnt);
+ idx->level = cpu_to_le16(level);
+ for (j = 0; j < child_cnt; j++) {
+ size_t bn = i * c->fanout + j;
+
+ /*
+ * The length of the index node in the level
+ * below is 'idx_sz' except when it is the last
+ * node on the row. i.e. all the others on the
+ * row are full.
+ */
+ if (bn == bcnt - 1)
+ blen = blast_len;
+ else
+ blen = idx_sz;
+ /*
+ * 'blnum' and 'boffs' hold the position of the
+ * index node on the level below.
+ */
+ if (boffs + blen > c->leb_size) {
+ blnum += 1;
+ boffs = 0;
+ }
+ /*
+ * Fill in the branch with the key and position
+ * of the index node from the level below.
+ */
+ br = ubifs_idx_branch(c, idx, j);
+ key_write_idx(&(*p)->key, &br->key);
+ br->lnum = cpu_to_le32(blnum);
+ br->offs = cpu_to_le32(boffs);
+ br->len = cpu_to_le32(blen);
+ /*
+ * Step to the next index node on the level
+ * below.
+ */
+ boffs += ALIGN(blen, 8);
+ p += pstep;
+ }
+ add_idx_node(idx, child_cnt);
+ }
+ }
+
+ /* Free stuff */
+ for (i = 0; i < idx_cnt; i++)
+ free(idx_ptr[i]);
+ free(idx_ptr);
+ free(idx);
+
+ dbg_msg(1, "zroot is at %d:%d len %d", c->zroot.lnum, c->zroot.offs,
+ c->zroot.len);
+
+ /* Set the index head */
+ c->ihead_lnum = head_lnum;
+ c->ihead_offs = ALIGN(head_offs, c->min_io_size);
+ dbg_msg(1, "ihead is at %d:%d", c->ihead_lnum, c->ihead_offs);
+
+ /* Flush the last index LEB */
+ err = flush_nodes();
+ if (err)
+ return err;
+
+ return 0;
+}
+
+/**
+ * set_gc_lnum - set the LEB number reserved for the garbage collector.
+ */
+static int set_gc_lnum(void)
+{
+ int err;
+
+ c->gc_lnum = head_lnum++;
+ err = write_empty_leb(c->gc_lnum);
+ if (err)
+ return err;
+ set_lprops(c->gc_lnum, 0, 0);
+ c->lst.empty_lebs += 1;
+ return 0;
+}
+
+/**
+ * finalize_leb_cnt - now that we know how many LEBs we used.
+ */
+static int finalize_leb_cnt(void)
+{
+ c->leb_cnt = head_lnum;
+ if (c->leb_cnt > c->max_leb_cnt)
+ return err_msg("max_leb_cnt too low (%d needed)", c->leb_cnt);
+ c->main_lebs = c->leb_cnt - c->main_first;
+ if (verbose) {
+ printf("\tsuper lebs: %d\n", UBIFS_SB_LEBS);
+ printf("\tmaster lebs: %d\n", UBIFS_MST_LEBS);
+ printf("\tlog_lebs: %d\n", c->log_lebs);
+ printf("\tlpt_lebs: %d\n", c->lpt_lebs);
+ printf("\torph_lebs: %d\n", c->orph_lebs);
+ printf("\tmain_lebs: %d\n", c->main_lebs);
+ printf("\tgc lebs: %d\n", 1);
+ printf("\tindex lebs: %d\n", c->lst.idx_lebs);
+ printf("\tleb_cnt: %d\n", c->leb_cnt);
+ }
+ dbg_msg(1, "total_free: %llu", c->lst.total_free);
+ dbg_msg(1, "total_dirty: %llu", c->lst.total_dirty);
+ dbg_msg(1, "total_used: %llu", c->lst.total_used);
+ dbg_msg(1, "total_dead: %llu", c->lst.total_dead);
+ dbg_msg(1, "total_dark: %llu", c->lst.total_dark);
+ dbg_msg(1, "index size: %llu", c->old_idx_sz);
+ dbg_msg(1, "empty_lebs: %d", c->lst.empty_lebs);
+ return 0;
+}
+
+/**
+ * write_super - write the super block.
+ */
+static int write_super(void)
+{
+ struct ubifs_sb_node sup;
+
+ memset(&sup, 0, UBIFS_SB_NODE_SZ);
+
+ sup.ch.node_type = UBIFS_SB_NODE;
+ sup.key_hash = c->key_hash_type;
+ sup.min_io_size = cpu_to_le32(c->min_io_size);
+ sup.leb_size = cpu_to_le32(c->leb_size);
+ sup.leb_cnt = cpu_to_le32(c->leb_cnt);
+ sup.max_leb_cnt = cpu_to_le32(c->max_leb_cnt);
+ sup.max_bud_bytes = cpu_to_le64(c->max_bud_bytes);
+ sup.log_lebs = cpu_to_le32(c->log_lebs);
+ sup.lpt_lebs = cpu_to_le32(c->lpt_lebs);
+ sup.orph_lebs = cpu_to_le32(c->orph_lebs);
+ sup.jhead_cnt = cpu_to_le32(c->jhead_cnt);
+ sup.fanout = cpu_to_le32(c->fanout);
+ sup.lsave_cnt = cpu_to_le32(c->lsave_cnt);
+ sup.fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION);
+ sup.default_compr = cpu_to_le16(c->default_compr);
+ sup.rp_size = cpu_to_le64(c->rp_size);
+ sup.time_gran = cpu_to_le32(DEFAULT_TIME_GRAN);
+ uuid_generate_random(sup.uuid);
+ if (verbose) {
+ char s[40];
+
+ uuid_unparse_upper(sup.uuid, s);
+ printf("\tUUID: %s\n", s);
+ }
+ if (c->big_lpt)
+ sup.flags |= cpu_to_le32(UBIFS_FLG_BIGLPT);
+ if (c->space_fixup)
+ sup.flags |= cpu_to_le32(UBIFS_FLG_SPACE_FIXUP);
+
+ return write_node(&sup, UBIFS_SB_NODE_SZ, UBIFS_SB_LNUM);
+}
+
+/**
+ * write_master - write the master node.
+ */
+static int write_master(void)
+{
+ struct ubifs_mst_node mst;
+ int err;
+
+ memset(&mst, 0, UBIFS_MST_NODE_SZ);
+
+ mst.ch.node_type = UBIFS_MST_NODE;
+ mst.log_lnum = cpu_to_le32(UBIFS_LOG_LNUM);
+ mst.highest_inum = cpu_to_le64(c->highest_inum);
+ mst.cmt_no = cpu_to_le64(0);
+ mst.flags = cpu_to_le32(UBIFS_MST_NO_ORPHS);
+ mst.root_lnum = cpu_to_le32(c->zroot.lnum);
+ mst.root_offs = cpu_to_le32(c->zroot.offs);
+ mst.root_len = cpu_to_le32(c->zroot.len);
+ mst.gc_lnum = cpu_to_le32(c->gc_lnum);
+ mst.ihead_lnum = cpu_to_le32(c->ihead_lnum);
+ mst.ihead_offs = cpu_to_le32(c->ihead_offs);
+ mst.index_size = cpu_to_le64(c->old_idx_sz);
+ mst.lpt_lnum = cpu_to_le32(c->lpt_lnum);
+ mst.lpt_offs = cpu_to_le32(c->lpt_offs);
+ mst.nhead_lnum = cpu_to_le32(c->nhead_lnum);
+ mst.nhead_offs = cpu_to_le32(c->nhead_offs);
+ mst.ltab_lnum = cpu_to_le32(c->ltab_lnum);
+ mst.ltab_offs = cpu_to_le32(c->ltab_offs);
+ mst.lsave_lnum = cpu_to_le32(c->lsave_lnum);
+ mst.lsave_offs = cpu_to_le32(c->lsave_offs);
+ mst.lscan_lnum = cpu_to_le32(c->lscan_lnum);
+ mst.empty_lebs = cpu_to_le32(c->lst.empty_lebs);
+ mst.idx_lebs = cpu_to_le32(c->lst.idx_lebs);
+ mst.total_free = cpu_to_le64(c->lst.total_free);
+ mst.total_dirty = cpu_to_le64(c->lst.total_dirty);
+ mst.total_used = cpu_to_le64(c->lst.total_used);
+ mst.total_dead = cpu_to_le64(c->lst.total_dead);
+ mst.total_dark = cpu_to_le64(c->lst.total_dark);
+ mst.leb_cnt = cpu_to_le32(c->leb_cnt);
+
+ err = write_node(&mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM);
+ if (err)
+ return err;
+
+ err = write_node(&mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1);
+ if (err)
+ return err;
+
+ return 0;
+}
+
+/**
+ * write_log - write an empty log.
+ */
+static int write_log(void)
+{
+ struct ubifs_cs_node cs;
+ int err, i, lnum;
+
+ lnum = UBIFS_LOG_LNUM;
+
+ cs.ch.node_type = UBIFS_CS_NODE;
+ cs.cmt_no = cpu_to_le64(0);
+
+ err = write_node(&cs, UBIFS_CS_NODE_SZ, lnum);
+ if (err)
+ return err;
+
+ lnum += 1;
+
+ for (i = 1; i < c->log_lebs; i++, lnum++) {
+ err = write_empty_leb(lnum);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+/**
+ * write_lpt - write the LEB properties tree.
+ */
+static int write_lpt(void)
+{
+ int err, lnum;
+
+ err = create_lpt(c);
+ if (err)
+ return err;
+
+ lnum = c->nhead_lnum + 1;
+ while (lnum <= c->lpt_last) {
+ err = write_empty_leb(lnum++);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+/**
+ * write_orphan_area - write an empty orphan area.
+ */
+static int write_orphan_area(void)
+{
+ int err, i, lnum;
+
+ lnum = UBIFS_LOG_LNUM + c->log_lebs + c->lpt_lebs;
+ for (i = 0; i < c->orph_lebs; i++, lnum++) {
+ err = write_empty_leb(lnum);
+ if (err)
+ return err;
+ }
+ return 0;
+}
+
+/**
+ * check_volume_empty - check if the UBI volume is empty.
+ *
+ * This function checks if the UBI volume is empty by looking if its LEBs are
+ * mapped or not.
+ *
+ * Returns %0 in case of success, %1 is the volume is not empty,
+ * and a negative error code in case of failure.
+ */
+static int check_volume_empty(void)
+{
+ int lnum, err;
+
+ for (lnum = 0; lnum < c->vi.rsvd_lebs; lnum++) {
+ err = ubi_is_mapped(out_fd, lnum);
+ if (err < 0)
+ return err;
+ if (err == 1)
+ return 1;
+ }
+ return 0;
+}
+
+/**
+ * open_target - open the output target.
+ *
+ * Open the output target. The target can be an UBI volume
+ * or a file.
+ *
+ * Returns %0 in case of success and %-1 in case of failure.
+ */
+static int open_target(void)
+{
+ if (out_ubi) {
+ out_fd = open(output, O_RDWR | O_EXCL);
+
+ if (out_fd == -1)
+ return sys_err_msg("cannot open the UBI volume '%s'",
+ output);
+ if (ubi_set_property(out_fd, UBI_VOL_PROP_DIRECT_WRITE, 1))
+ return sys_err_msg("ubi_set_property failed");
+
+ if (!yes && check_volume_empty()) {
+ if (!prompt("UBI volume is not empty. Format anyways?", false))
+ return err_msg("UBI volume is not empty");
+ }
+ } else {
+ out_fd = open(output, O_CREAT | O_RDWR | O_TRUNC,
+ S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH);
+ if (out_fd == -1)
+ return sys_err_msg("cannot create output file '%s'",
+ output);
+ }
+ return 0;
+}
+
+
+/**
+ * close_target - close the output target.
+ *
+ * Close the output target. If the target was an UBI
+ * volume, also close libubi.
+ *
+ * Returns %0 in case of success and %-1 in case of failure.
+ */
+static int close_target(void)
+{
+ if (ubi)
+ libubi_close(ubi);
+ if (out_fd >= 0 && close(out_fd) == -1)
+ return sys_err_msg("cannot close the target '%s'", output);
+ if (output)
+ free(output);
+ return 0;
+}
+
+/**
+ * init - initialize things.
+ */
+static int init(void)
+{
+ int err, i, main_lebs, big_lpt = 0, sz;
+
+ c->highest_inum = UBIFS_FIRST_INO;
+
+ c->jhead_cnt = 1;
+
+ main_lebs = c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
+ main_lebs -= c->log_lebs + c->orph_lebs;
+
+ err = calc_dflt_lpt_geom(c, &main_lebs, &big_lpt);
+ if (err)
+ return err;
+
+ c->main_first = UBIFS_LOG_LNUM + c->log_lebs + c->lpt_lebs +
+ c->orph_lebs;
+ head_lnum = c->main_first;
+ head_offs = 0;
+
+ c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
+ c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
+
+ c->lpt = malloc(c->main_lebs * sizeof(struct ubifs_lprops));
+ if (!c->lpt)
+ return err_msg("unable to allocate LPT");
+
+ c->ltab = malloc(c->lpt_lebs * sizeof(struct ubifs_lprops));
+ if (!c->ltab)
+ return err_msg("unable to allocate LPT ltab");
+
+ /* Initialize LPT's own lprops */
+ for (i = 0; i < c->lpt_lebs; i++) {
+ c->ltab[i].free = c->leb_size;
+ c->ltab[i].dirty = 0;
+ }
+
+ c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
+ c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
+ dbg_msg(1, "dead_wm %d dark_wm %d", c->dead_wm, c->dark_wm);
+
+ leb_buf = malloc(c->leb_size);
+ if (!leb_buf)
+ return err_msg("out of memory");
+
+ node_buf = malloc(NODE_BUFFER_SIZE);
+ if (!node_buf)
+ return err_msg("out of memory");
+
+ block_buf = malloc(UBIFS_BLOCK_SIZE);
+ if (!block_buf)
+ return err_msg("out of memory");
+
+ sz = sizeof(struct inum_mapping *) * HASH_TABLE_SIZE;
+ hash_table = malloc(sz);
+ if (!hash_table)
+ return err_msg("out of memory");
+ memset(hash_table, 0, sz);
+
+ err = init_compression();
+ if (err)
+ return err;
+
+ return 0;
+}
+
+static void destroy_hash_table(void)
+{
+ int i;
+
+ for (i = 0; i < HASH_TABLE_SIZE; i++) {
+ struct inum_mapping *im, *q;
+
+ for (im = hash_table[i]; im; ) {
+ q = im;
+ im = im->next;
+ free(q->path_name);
+ free(q);
+ }
+ }
+}
+
+/**
+ * deinit - deinitialize things.
+ */
+static void deinit(void)
+{
+ free(c->lpt);
+ free(c->ltab);
+ free(leb_buf);
+ free(node_buf);
+ free(block_buf);
+ destroy_hash_table();
+ free(hash_table);
+ destroy_compression();
+ free_devtable_info();
+}
+
+/**
+ * mkfs - make the file system.
+ *
+ * Each on-flash area has a corresponding function to create it. The order of
+ * the functions reflects what information must be known to complete each stage.
+ * As a consequence the output file is not written sequentially. No effort has
+ * been made to make efficient use of memory or to allow for the possibility of
+ * incremental updates to the output file.
+ */
+static int mkfs(void)
+{
+ int err = 0;
+
+ err = init();
+ if (err)
+ goto out;
+
+ err = write_data();
+ if (err)
+ goto out;
+
+ err = set_gc_lnum();
+ if (err)
+ goto out;
+
+ err = write_index();
+ if (err)
+ goto out;
+
+ err = finalize_leb_cnt();
+ if (err)
+ goto out;
+
+ err = write_lpt();
+ if (err)
+ goto out;
+
+ err = write_super();
+ if (err)
+ goto out;
+
+ err = write_master();
+ if (err)
+ goto out;
+
+ err = write_log();
+ if (err)
+ goto out;
+
+ err = write_orphan_area();
+
+out:
+ deinit();
+ return err;
+}
+
+int main(int argc, char *argv[])
+{
+ int err;
+
+ err = get_options(argc, argv);
+ if (err)
+ return err;
+
+ err = open_target();
+ if (err)
+ return err;
+
+ err = mkfs();
+ if (err) {
+ close_target();
+ return err;
+ }
+
+ err = close_target();
+ if (err)
+ return err;
+
+ if (verbose)
+ printf("Success!\n");
+
+ return 0;
+}