summaryrefslogtreecommitdiff
path: root/ubi-utils/src/ubiinfo/ubiinfo.c
diff options
context:
space:
mode:
authorFrank Haverkamp <haver@vnet.ibm.com>2006-06-14 11:53:59 +0200
committerFrank Haverkamp <haver@vnet.ibm.com>2006-10-31 15:06:06 +0100
commitf175083413f0f94de88def865eeb65e465ded389 (patch)
treef50ded679736272988ccce2a15d17fdeac2e09a5 /ubi-utils/src/ubiinfo/ubiinfo.c
parent37f40f5574e04ae050507133ade8fe0e6bae2f0d (diff)
UBI - Unsorted Block Images
UBI (Latin: "where?") manages multiple logical volumes on a single flash device, specifically supporting NAND flash devices. UBI provides a flexible partitioning concept which still allows for wear-levelling across the whole flash device. In a sense, UBI may be compared to the Logical Volume Manager (LVM). Whereas LVM maps logical sector numbers to physical HDD sector numbers, UBI maps logical eraseblocks to physical eraseblocks. More information may be found in the UBI design documentation: ubidesign.pdf. Which can be found here: http://www.linux-mtd.infradead.org/doc/ubi.html Partitioning/Re-partitioning An UBI volume occupies a certain number of erase blocks. This is limited by a configured maximum volume size, which could also be viewed as the partition size. Each individual UBI volume's size can be changed independently of the other UBI volumes, provided that the sum of all volume sizes doesn't exceed a certain limit. UBI supports dynamic volumes and static volumes. Static volumes are read-only and their contents are protected by CRC check sums. Bad eraseblocks handling UBI transparently handles bad eraseblocks. When a physical eraseblock becomes bad, it is substituted by a good physical eraseblock, and the user does not even notice this. Scrubbing On a NAND flash bit flips can occur on any write operation, sometimes also on read. If bit flips persist on the device, at first they can still be corrected by ECC, but once they accumulate, correction will become impossible. Thus it is best to actively scrub the affected eraseblock, by first copying it to a free eraseblock and then erasing the original. The UBI layer performs this type of scrubbing under the covers, transparently to the UBI volume users. Erase Counts UBI maintains an erase count header per eraseblock. This frees higher-level layers (like file systems) from doing this and allows for centralized erase count management instead. The erase counts are used by the wear-levelling algorithm in the UBI layer. The algorithm itself is exchangeable. Booting from NAND For booting directly from NAND flash the hardware must at least be capable of fetching and executing a small portion of the NAND flash. Some NAND flash controllers have this kind of support. They usually limit the window to a few kilobytes in erase block 0. This "initial program loader" (IPL) must then contain sufficient logic to load and execute the next boot phase. Due to bad eraseblocks, which may be randomly scattered over the flash device, it is problematic to store the "secondary program loader" (SPL) statically. Also, due to bit-flips it may become corrupted over time. UBI allows to solve this problem gracefully by storing the SPL in a small static UBI volume. UBI volumes vs. static partitions UBI volumes are still very similar to static MTD partitions: * both consist of eraseblocks (logical eraseblocks in case of UBI volumes, and physical eraseblocks in case of static partitions; * both support three basic operations - read, write, erase. But UBI volumes have the following advantages over traditional static MTD partitions: * there are no eraseblock wear-leveling constraints in case of UBI volumes, so the user should not care about this; * there are no bit-flips and bad eraseblocks in case of UBI volumes. So, UBI volumes may be considered as flash devices with relaxed restrictions. Where can it be found? Documentation, kernel code and applications can be found in the MTD gits. What are the applications for? The applications help to create binary flash images for two purposes: pfi files (partial flash images) for in-system update of UBI volumes, and plain binary images, with or without OOB data in case of NAND, for a manufacturing step. Furthermore some tools are/and will be created that allow flash content analysis after a system has crashed. Who did UBI? The original ideas, where UBI is based on, were developed by Andreas Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others were involved too. The implementation of the kernel layer was done by Artem B. Bityutskiy. The user-space applications and tools were written by Oliver Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem. Joern Engel contributed a patch which modifies JFFS2 so that it can be run on a UBI volume. Thomas Gleixner did modifications to the NAND layer and also some to JFFS2 to make it work. Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
Diffstat (limited to 'ubi-utils/src/ubiinfo/ubiinfo.c')
-rw-r--r--ubi-utils/src/ubiinfo/ubiinfo.c406
1 files changed, 406 insertions, 0 deletions
diff --git a/ubi-utils/src/ubiinfo/ubiinfo.c b/ubi-utils/src/ubiinfo/ubiinfo.c
new file mode 100644
index 0000000..6f7443b
--- /dev/null
+++ b/ubi-utils/src/ubiinfo/ubiinfo.c
@@ -0,0 +1,406 @@
+/*
+ * Copyright (c) International Business Machines Corp., 2006
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
+ * the GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * Print out information about the UBI table this IPL is using. This
+ * can be used afterwards to analyze misbehavior of the IPL code. The
+ * input this program requires is the last 1 MiB DDRAM of our system
+ * where the scanning table is placed into.
+ *
+ * Author: Frank Haverkamp <haver@vnet.ibm.com>
+ */
+
+#include <stdlib.h>
+#include <stdio.h>
+#include <unistd.h>
+#include <string.h>
+#include <time.h>
+#include <argp.h>
+#include <getopt.h>
+#include <stdint.h>
+#include <sys/time.h>
+#include <netinet/in.h>
+
+#define __unused __attribute__((unused))
+
+/* This should hopefully be constant and the same in all
+ * configurations.
+ */
+#define CFG_IPLSIZE 512
+#define CFG_SPLCODE 512
+#define MEMTOP 0x06600000 /* Sunray 102 MiB */
+#define MEMSIZE 0x00100000 /* 1 MiB */
+#define CODE_SIZE (64 * 1024)
+
+/* FIXME Except of the memory size this should be defined via
+ * parameters
+ *
+ * CFG_MEMTOP_BAMBOO 0x02000000
+ * CFG_MEMTOP_SUNRAY 0x06600000
+ */
+
+#include "ubiipl.h"
+#include "ubiflash.h"
+
+#define MIN(x,y) ((x)<(y)?(x):(y))
+
+#define ERR_RET(rc) { \
+ fprintf(stderr, "%s:%d failed rc=%d\n", __func__, \
+ __LINE__, (rc)); \
+ return (rc); \
+ }
+
+#define VERSION "1.3"
+
+static error_t parse_opt (int key, char *arg, struct argp_state *state);
+const char *argp_program_version = VERSION;
+const char *argp_program_bug_address = "<haver@vnet.ibm.com>";
+
+static char doc[] = "\nVersion: " VERSION "\n\t"
+ " at "__DATE__" "__TIME__"\n"
+ "\n"
+ "Test program\n";
+
+static struct argp_option options[] = {
+ /* common settings */
+ { .name = "verbose",
+ .key = 'v',
+ .arg = "<level>",
+ .flags = 0,
+ .doc = "Set verbosity level to <level>",
+ .group = OPTION_ARG_OPTIONAL },
+
+ { .name = "memtop",
+ .key = 'm',
+ .arg = "<memtop>",
+ .flags = 0,
+ .doc = "Set top of memory, 102 MiB for Sunray and 16 MiB for Bamboo",
+ .group = OPTION_ARG_OPTIONAL },
+
+ { .name = NULL,
+ .key = 0,
+ .arg = NULL,
+ .flags = 0,
+ .doc = NULL,
+ .group = 0 },
+};
+
+typedef struct test_args {
+ int verbose;
+ unsigned long memtop;
+ char *arg1;
+ char **options;
+} test_args;
+
+static struct test_args g_args = {
+ .memtop = MEMTOP,
+ .verbose = 0,
+ .arg1 = NULL,
+ .options = NULL,
+};
+
+static struct argp argp = {
+ options: options,
+ parser: parse_opt,
+ args_doc: "[last_1MiB_memory.bin]",
+ doc: doc,
+ children: NULL,
+ help_filter: NULL,
+ argp_domain: NULL,
+};
+
+static int verbose = 0;
+
+/**
+ * @brief Parse the arguments passed into the test case.
+ *
+ * @param key The parameter.
+ * @param arg Argument passed to parameter.
+ * @param state Location to put information on parameters.
+ *
+ * @return error_t
+ */
+static error_t
+parse_opt(int key, char *arg, struct argp_state *state)
+{
+ /* Get the `input' argument from `argp_parse', which we
+ know is a pointer to our arguments structure. */
+ test_args *args = state->input;
+
+ switch (key) {
+ /* common settings */
+ case 'v': /* --verbose=<level> */
+ verbose = args->verbose = strtoul(arg, (char **)NULL, 0);
+ break;
+
+ case 'm': /* --memtop */
+ args->memtop = strtoul(arg, (char **)NULL, 0);
+ break;
+
+ case ARGP_KEY_NO_ARGS:
+ /* argp_usage(state); */
+ break;
+
+ case ARGP_KEY_ARG:
+ args->arg1 = arg;
+ /* Now we consume all the rest of the arguments.
+ `state->next' is the index in `state->argv' of the
+ next argument to be parsed, which is the first STRING
+ we're interested in, so we can just use
+ `&state->argv[state->next]' as the value for
+ arguments->strings.
+
+ _In addition_, by setting `state->next' to the end
+ of the arguments, we can force argp to stop parsing
+ here and return. */
+
+ args->options = &state->argv[state->next];
+ state->next = state->argc;
+ break;
+
+ case ARGP_KEY_END:
+ /* print out message if no arguments are given but PFI
+ write should be done */
+ break;
+
+ default:
+ return(ARGP_ERR_UNKNOWN);
+ }
+ return 0;
+}
+
+static void
+hexdump(const char *buf, int len)
+{
+ char line[16];
+ char str[256];
+ char dummy[256];
+ int j = 0;
+
+ while (len > 0) {
+ int i;
+
+ strcpy(str, " ");
+
+ for (j = 0; j < MIN(16, len); j++)
+ line[j] = *buf++;
+
+ for (i = 0; i < j; i++) {
+ if (!(i & 3)) {
+ sprintf(dummy, " %.2x", line[i] & 0xff);
+ strcat(str, dummy);
+ } else {
+ sprintf(dummy, "%.2x", line[i] & 0xff);
+ strcat(str, dummy);
+ }
+ }
+
+ /* Print empty space */
+ for (; i < 16; i++)
+ if (!(i & 1))
+ strcat(str, " ");
+ else
+ strcat(str, " ");
+
+ strcat(str, " ");
+ for (i = 0; i < j; i++) {
+ if (isprint(line[i])) {
+ sprintf(dummy, "%c", line[i]);
+ strcat(str, dummy);
+ } else {
+ strcat(str, ".");
+ }
+ }
+ printf("%s\n", str);
+ len -= 16;
+ }
+}
+
+static void
+print_status_help(void)
+{
+ printf("Error Codes from IPL\n");
+ printf(" IO Error %d\n", STAT_IO_FAILED);
+ printf(" Block is bad %d\n", STAT_BLOCK_BAD);
+ printf(" ECC unrec error %d\n", STAT_ECC_ERROR);
+ printf(" CRC csum failed %d\n", STAT_CRC_ERROR);
+ printf(" Magic not avail %d\n", STAT_NO_MAGIC);
+ printf(" No image avail %d\n", STAT_NO_IMAGE);
+ printf(" Image is invalid %d\n", STAT_INVALID_IMAGE);
+ printf(" Image is defect %d\n\n", STAT_DEFECT_IMAGE);
+
+}
+
+static void
+print_ubi_scan_info(struct ubi_scan_info *fi)
+{
+ int i;
+
+ printf("ubi_scan_info\n");
+ printf(" version %08x\n", ntohl(fi->version));
+ printf(" bootstatus %08x\n", ntohl(fi->bootstatus));
+ printf(" flashtype %08x\n", ntohl(fi->flashtype));
+ printf(" flashid %08x\n", ntohl(fi->flashid));
+ printf(" flashmfgr %08x\n", ntohl(fi->flashmfr));
+ printf(" flashsize %d bytes (%dM)\n",
+ ntohl(fi->flashsize), ntohl(fi->flashsize) / (1024 * 1024));
+ printf(" blocksize %d bytes\n", ntohl(fi->blocksize));
+ printf(" blockshift %d\n", ntohl(fi->blockshift));
+ printf(" nrblocks %d\n", ntohl(fi->nrblocks));
+ printf(" pagesize %d\n", ntohl(fi->pagesize));
+ printf(" imagelen %d\n", ntohl(fi->imagelen));
+ printf(" blockinfo %08x\n", ntohl((int)fi->blockinfo));
+
+ printf(" nr imageblocks imageoffs\n");
+ for (i = 0; i < UBI_BLOCK_IDENT_MAX; i++)
+ printf(" [%2d] %08x %08x\n", i,
+ ntohl(fi->imageblocks[i]),
+ ntohl(fi->imageoffs[i]));
+
+ for (i = 0; i < UBI_TIMESTAMPS; i++) {
+ if (!ntohl(fi->times[i]))
+ continue;
+ printf("time[%3d] = %08x %.3f sec\n", i, ntohl(fi->times[i]),
+ (double)ntohl(fi->times[i]) / 500000000.0);
+ }
+
+ printf("crc32_table\n");
+ hexdump((char *)&fi->crc32_table, sizeof(fi->crc32_table));
+ printf("\npage_buf\n");
+ hexdump((char *)&fi->page_buf, sizeof(fi->page_buf));
+
+ printf("\n");
+
+}
+
+static void
+print_ubi_block_info(struct ubi_scan_info *fi,
+ struct ubi_vid_hdr *bi, int nr)
+{
+ int i;
+ int unknown = 0;
+
+ printf("\nBINFO\n");
+
+ for (i = 0; i < nr; i++) {
+ if ((int)ubi32_to_cpu(bi[i].magic) != UBI_VID_HDR_MAGIC) {
+ printf("block=%d %08x\n",
+ i, i * ntohl(fi->blocksize));
+#if 0
+ printf(".");
+ if ((unknown & 0x3f) == 0x3f)
+ printf("\n");
+ unknown++;
+#else
+ hexdump((char *)&bi[i],
+ sizeof(struct ubi_vid_hdr));
+#endif
+ } else {
+ if (unknown)
+ printf("\n");
+ printf("block=%d %08x\n"
+ " leb_ver=0x%x data_size=%d "
+ "lnum=%d used_ebs=0x%x\n"
+ " data_crc=%08x hdr_crc=%08x\n",
+ i, i * ntohl(fi->blocksize),
+ ubi32_to_cpu(bi[i].leb_ver),
+ ubi32_to_cpu(bi[i].data_size),
+ ubi32_to_cpu(bi[i].lnum),
+ ubi32_to_cpu(bi[i].used_ebs),
+ ubi32_to_cpu(bi[i].data_crc),
+ ubi32_to_cpu(bi[i].hdr_crc));
+ hexdump((char *)&bi[i],
+ sizeof(struct ubi_vid_hdr));
+ unknown = 0;
+ }
+ }
+}
+
+static int do_read(unsigned int memtop, char *buf, int buf_len __unused)
+{
+ unsigned long finfo_addr;
+ unsigned long binfo_addr;
+ unsigned long images_addr;
+ unsigned long nrblocks;
+ unsigned long bi_size;
+ unsigned long images_size;
+ struct ubi_scan_info *fi;
+ struct ubi_vid_hdr *bi;
+ char *images;
+ unsigned long memaddr = memtop - MEMSIZE;
+
+ print_status_help();
+
+ /* Read and print FINFO */
+ finfo_addr = MEMSIZE - CFG_IPLSIZE * 1024;
+
+ printf("read info at addr %08lx\n", finfo_addr);
+ fi = (struct ubi_scan_info *)(buf + finfo_addr);
+
+ binfo_addr = ntohl((unsigned long)fi->blockinfo) - memaddr;
+ images_addr = ntohl((unsigned long)fi->images) - memaddr;
+ nrblocks = ntohl(fi->nrblocks);
+
+ printf("BINFO %08lx\n", binfo_addr);
+
+ bi_size = nrblocks * sizeof(struct ubi_vid_hdr);
+ images_size = nrblocks * sizeof(unsigned int);
+
+ printf("FINFO\n");
+ print_ubi_scan_info(fi);
+ /* hexdump((char *)fi, sizeof(*fi)); */
+
+ /* Read and print BINFO */
+ bi = (struct ubi_vid_hdr *)(buf + binfo_addr);
+ print_ubi_block_info(fi, bi, nrblocks);
+
+ /* Read and print IMAGES */
+ images = buf + images_addr;
+ printf("\nIMAGES\n");
+ hexdump(images, images_size);
+
+ return 0;
+}
+
+int main(int argc, char *argv[])
+{
+ char buf[MEMSIZE];
+ FILE *fp;
+ int rc;
+
+ argp_parse(&argp, argc, argv, ARGP_IN_ORDER, 0, &g_args);
+
+ if (!g_args.arg1) {
+ fprintf(stderr, "Please specify a file "
+ "name for memory dump!\n");
+ exit(EXIT_FAILURE);
+ }
+
+ memset(buf, 0xAB, sizeof(buf));
+
+ fp = fopen(g_args.arg1, "r");
+ if (!fp)
+ exit(EXIT_FAILURE);
+ rc = fread(buf, 1, sizeof(buf), fp);
+ if (rc != sizeof(buf))
+ exit(EXIT_FAILURE);
+ fclose(fp);
+ do_read(g_args.memtop, buf, sizeof(buf));
+
+ exit(EXIT_SUCCESS);
+}