diff options
author | Frank Haverkamp <haver@vnet.ibm.com> | 2006-06-14 11:53:59 +0200 |
---|---|---|
committer | Frank Haverkamp <haver@vnet.ibm.com> | 2006-10-31 15:06:06 +0100 |
commit | f175083413f0f94de88def865eeb65e465ded389 (patch) | |
tree | f50ded679736272988ccce2a15d17fdeac2e09a5 /ubi-utils/src/pddcustomize/pddcustomize.c | |
parent | 37f40f5574e04ae050507133ade8fe0e6bae2f0d (diff) |
UBI - Unsorted Block Images
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.
In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.
More information may be found in the UBI design documentation:
ubidesign.pdf. Which can be found here:
http://www.linux-mtd.infradead.org/doc/ubi.html
Partitioning/Re-partitioning
An UBI volume occupies a certain number of erase blocks. This is
limited by a configured maximum volume size, which could also be
viewed as the partition size. Each individual UBI volume's size can
be changed independently of the other UBI volumes, provided that the
sum of all volume sizes doesn't exceed a certain limit.
UBI supports dynamic volumes and static volumes. Static volumes are
read-only and their contents are protected by CRC check sums.
Bad eraseblocks handling
UBI transparently handles bad eraseblocks. When a physical
eraseblock becomes bad, it is substituted by a good physical
eraseblock, and the user does not even notice this.
Scrubbing
On a NAND flash bit flips can occur on any write operation,
sometimes also on read. If bit flips persist on the device, at first
they can still be corrected by ECC, but once they accumulate,
correction will become impossible. Thus it is best to actively scrub
the affected eraseblock, by first copying it to a free eraseblock
and then erasing the original. The UBI layer performs this type of
scrubbing under the covers, transparently to the UBI volume users.
Erase Counts
UBI maintains an erase count header per eraseblock. This frees
higher-level layers (like file systems) from doing this and allows
for centralized erase count management instead. The erase counts are
used by the wear-levelling algorithm in the UBI layer. The algorithm
itself is exchangeable.
Booting from NAND
For booting directly from NAND flash the hardware must at least be
capable of fetching and executing a small portion of the NAND
flash. Some NAND flash controllers have this kind of support. They
usually limit the window to a few kilobytes in erase block 0. This
"initial program loader" (IPL) must then contain sufficient logic to
load and execute the next boot phase.
Due to bad eraseblocks, which may be randomly scattered over the
flash device, it is problematic to store the "secondary program
loader" (SPL) statically. Also, due to bit-flips it may become
corrupted over time. UBI allows to solve this problem gracefully by
storing the SPL in a small static UBI volume.
UBI volumes vs. static partitions
UBI volumes are still very similar to static MTD partitions:
* both consist of eraseblocks (logical eraseblocks in case of UBI
volumes, and physical eraseblocks in case of static partitions;
* both support three basic operations - read, write, erase.
But UBI volumes have the following advantages over traditional
static MTD partitions:
* there are no eraseblock wear-leveling constraints in case of UBI
volumes, so the user should not care about this;
* there are no bit-flips and bad eraseblocks in case of UBI volumes.
So, UBI volumes may be considered as flash devices with relaxed
restrictions.
Where can it be found?
Documentation, kernel code and applications can be found in the MTD
gits.
What are the applications for?
The applications help to create binary flash images for two
purposes: pfi files (partial flash images) for in-system update of
UBI volumes, and plain binary images, with or without OOB data in
case of NAND, for a manufacturing step. Furthermore some tools
are/and will be created that allow flash content analysis after a
system has crashed.
Who did UBI?
The original ideas, where UBI is based on, were developed by Andreas
Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and
some others were involved too. The implementation of the kernel
layer was done by Artem B. Bityutskiy. The user-space applications
and tools were written by Oliver Lohmann with contributions from
Frank Haverkamp, Andreas Arnez, and Artem. Joern Engel contributed a
patch which modifies JFFS2 so that it can be run on a UBI
volume. Thomas Gleixner did modifications to the NAND layer and also
some to JFFS2 to make it work.
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
Diffstat (limited to 'ubi-utils/src/pddcustomize/pddcustomize.c')
-rw-r--r-- | ubi-utils/src/pddcustomize/pddcustomize.c | 496 |
1 files changed, 496 insertions, 0 deletions
diff --git a/ubi-utils/src/pddcustomize/pddcustomize.c b/ubi-utils/src/pddcustomize/pddcustomize.c new file mode 100644 index 0000000..f71d916 --- /dev/null +++ b/ubi-utils/src/pddcustomize/pddcustomize.c @@ -0,0 +1,496 @@ +/* + * Copyright (c) International Business Machines Corp., 2006 + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See + * the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + * Author: Oliver Lohmann + * + * PDD (platform description data) contains a set of system specific + * boot-parameters. Some of those parameters need to be handled + * special on updates, e.g. the MAC addresses. They must also be kept + * if the system is updated and one must be able to modify them when + * the system has booted the first time. This tool is intended to do + * PDD modification. + */ + +#include <stdio.h> +#include <stdint.h> +#include <stdlib.h> +#include <string.h> +#include <getopt.h> +#include <argp.h> +#include <unistd.h> +#include <errno.h> +#include <mtd/ubi-header.h> + +#include "config.h" +#include "bootenv.h" +#include "error.h" +#include "example_ubi.h" +#include "libubi.h" +#include "ubimirror.h" + +typedef enum action_t { + ACT_NORMAL = 0, + ACT_LIST, + ACT_ARGP_ABORT, + ACT_ARGP_ERR, +} action_t; + +#define ABORT_ARGP do { \ + state->next = state->argc; \ + args->action = ACT_ARGP_ABORT; \ +} while (0) + +#define ERR_ARGP do { \ + state->next = state->argc; \ + args->action = ACT_ARGP_ERR; \ +} while (0) + +const char *argp_program_version = PACKAGE_VERSION; +const char *argp_program_bug_address = PACKAGE_BUGREPORT; +static char doc[] = "\nVersion: " PACKAGE_VERSION "\n\tBuilt on " + BUILD_CPU" "BUILD_OS" at "__DATE__" "__TIME__"\n" + "\n" + "pddcustomize - customize bootenv and pdd values.\n"; + +static const char copyright [] __attribute__((unused)) = + "FIXME: insert license type"; /* FIXME */ + +static struct argp_option options[] = { + { name: "copyright", key: 'c', arg: NULL, flags: 0, + doc: "Print copyright information.", + group: 1 }, + + { name: "input", key: 'i', arg: "<input>", flags: 0, + doc: "Binary input file. For debug purposes.", + group: 1 }, + + { name: "output", key: 'o', arg: "<output>", flags: 0, + doc: "Binary output file. For debug purposes.", + group: 1 }, + + { name: "list", key: 'l', arg: NULL, flags: 0, + doc: "List card bootenv/pdd values.", + group: 1 }, + + { name: "both", key: 'b', arg: NULL, flags: 0, + doc: "Mirror updated PDD to redundand copy.", + group: 1 }, + + { name: "side", key: 's', arg: "<seqnum>", flags: 0, + doc: "The side/seqnum to update.", + group: 1 }, + + { name: "host", key: 'x', arg: NULL, flags: 0, + doc: "use x86 platform for debugging.", + group: 1 }, + + { name: NULL, key: 0, arg: NULL, flags: 0, doc: NULL, group: 0 }, +}; + +typedef struct myargs { + action_t action; + const char* file_in; + const char* file_out; + int both; + int side; + int x86; /* X86 host, use files for testing */ + bootenv_t env_in; + + char *arg1; + char **options; /* [STRING...] */ +} myargs; + +static int +get_update_side(const char* str) +{ + uint32_t i = strtoul(str, NULL, 0); + + if ((i != 0) && (i != 1)) { + return -1; + } + + return i; +} + +static int +extract_pair(bootenv_t env, const char* str) +{ + int rc = 0; + char* key; + char* val; + + key = strdup(str); + if (key == NULL) + return -ENOMEM; + + val = strstr(key, "="); + if (val == NULL) { + err_msg("Wrong argument: %s\n" + "Expecting key=value pair.\n", str); + rc = -1; + goto err; + } + + *val = '\0'; /* split strings */ + val++; + rc = bootenv_set(env, key, val); + +err: + free(key); + return rc; +} + +static error_t +parse_opt(int key, char *arg, struct argp_state *state) +{ + int rc = 0; + int err = 0; + + myargs *args = state->input; + + switch (key) { + case 'c': + err_msg("%s\n", copyright); + ABORT_ARGP; + break; + case 'l': + args->action = ACT_LIST; + break; + case 'b': + args->both = 1; + break; + case 'x': + args->x86 = 1; + break; + case 's': + args->side = get_update_side(arg); + if (args->side < 0) { + err_msg("Unsupported seqnum: %d.\n" + "Supported seqnums are '0' and '1'\n", + args->side, arg); + ERR_ARGP; + } + break; + case 'i': + args->file_in = arg; + break; + case 'o': + args->file_out = arg; + break; + case ARGP_KEY_ARG: + rc = extract_pair(args->env_in, arg); + if (rc != 0) + ERR_ARGP; + break; + case ARGP_KEY_END: + if (err) { + err_msg("\n"); + argp_usage(state); + ERR_ARGP; + } + break; + default: + return(ARGP_ERR_UNKNOWN); + } + + return 0; +} + +static struct argp argp = { + options: options, + parser: parse_opt, + args_doc: "[key=value] [...]", + doc: doc, + children: NULL, + help_filter: NULL, + argp_domain: NULL, +}; + + +static int +list_bootenv(bootenv_t env) +{ + int rc = 0; + rc = bootenv_write_txt(stdout, env); + if (rc != 0) { + err_msg("Cannot list bootenv/pdd. rc: %d\n", rc); + goto err; + } +err: + return rc; +} + +static int +process_key_value(bootenv_t env_in, bootenv_t env) +{ + int rc = 0; + size_t size, i; + const char* tmp; + const char** key_vec = NULL; + + rc = bootenv_get_key_vector(env_in, &size, 0, &key_vec); + if (rc != 0) + goto err; + + for (i = 0; i < size; i++) { + rc = bootenv_get(env_in, key_vec[i], &tmp); + if (rc != 0) { + err_msg("Cannot read value to input key: %s. rc: %d\n", + key_vec[i], rc); + goto err; + } + rc = bootenv_set(env, key_vec[i], tmp); + if (rc != 0) { + err_msg("Cannot set value key: %s. rc: %d\n", + key_vec[i], rc); + goto err; + } + } + +err: + if (key_vec != NULL) + free(key_vec); + return rc; +} + +static int +read_bootenv(const char* file, bootenv_t env) +{ + int rc = 0; + FILE* fp_in = NULL; + + fp_in = fopen(file, "rb"); + if (fp_in == NULL) { + err_msg("Cannot open file: %s\n", file); + return -EIO; + } + + rc = bootenv_read(fp_in, env, BOOTENV_MAXSIZE); + if (rc != 0) { + err_msg("Cannot read bootenv from file %s. rc: %d\n", + file, rc); + goto err; + } + +err: + fclose(fp_in); + return rc; +} + +/* + * Read bootenv from ubi volume + */ +static int +ubi_read_bootenv(uint32_t devno, uint32_t id, bootenv_t env) +{ + ubi_lib_t ulib = NULL; + int rc = 0; + FILE* fp_in = NULL; + + rc = ubi_open(&ulib); + if( rc ){ + err_msg("Cannot allocate ubi structure\n"); + return rc; + } + + fp_in = ubi_vol_fopen_read(ulib, devno, id); + if (fp_in == NULL) { + err_msg("Cannot open volume:%d number:%d\n", devno, id); + goto err; + } + + rc = bootenv_read(fp_in, env, BOOTENV_MAXSIZE); + if (rc != 0) { + err_msg("Cannot read volume:%d number:%d\n", devno, id); + goto err; + } + +err: + if( fp_in ) + fclose(fp_in); + ubi_close(&ulib); + return rc; +} + +static int +write_bootenv(const char* file, bootenv_t env) +{ + int rc = 0; + FILE* fp_out; + + fp_out = fopen(file, "wb"); + if (fp_out == NULL) { + err_msg("Cannot open file: %s\n", file); + return -EIO; + } + + rc = bootenv_write(fp_out, env); + if (rc != 0) { + err_msg("Cannot write bootenv to file %s. rc: %d\n", file, rc); + goto err; + } + +err: + fclose(fp_out); + return rc; +} + +/* + * Read bootenv from ubi volume + */ +static int +ubi_write_bootenv(uint32_t devno, uint32_t id, bootenv_t env) +{ + ubi_lib_t ulib = NULL; + int rc = 0; + FILE* fp_out; + size_t nbytes ; + + rc = bootenv_size(env, &nbytes); + if( rc ){ + err_msg("Cannot determine size of bootenv structure\n"); + return rc; + } + rc = ubi_open(&ulib); + if( rc ){ + err_msg("Cannot allocate ubi structure\n"); + return rc; + } + fp_out = ubi_vol_fopen_update(ulib, devno, id, + (unsigned long long)nbytes); + if (fp_out == NULL) { + err_msg("Cannot open volume:%d number:%d\n", devno, id); + goto err; + } + + rc = bootenv_write(fp_out, env); + if (rc != 0) { + err_msg("Cannot write bootenv to volume %d number:%d\n", + devno, id); + goto err; + } + +err: + if( fp_out ) + fclose(fp_out); + ubi_close(&ulib); + return rc; +} + +static int +do_mirror(int volno) +{ + char errbuf[1024]; + uint32_t ids[2]; + int rc; + int src_volno_idx = 0; + + ids[0] = EXAMPLE_BOOTENV_VOL_ID_1; + ids[1] = EXAMPLE_BOOTENV_VOL_ID_2; + + if (volno == EXAMPLE_BOOTENV_VOL_ID_2) + src_volno_idx = 1; + + rc = ubimirror(EXAMPLE_UBI_DEVICE, src_volno_idx, ids, 2, errbuf, + sizeof errbuf); + if( rc ) + err_msg(errbuf); + return rc; +} + +int +main(int argc, char **argv) { + int rc = 0; + bootenv_t env = NULL; + uint32_t boot_volno; + myargs args = { + .action = ACT_NORMAL, + .file_in = NULL, + .file_out = NULL, + .side = -1, + .x86 = 0, + .both = 0, + .env_in = NULL, + + .arg1 = NULL, + .options = NULL, + }; + + rc = bootenv_create(&env); + if (rc != 0) { + err_msg("Cannot create bootenv handle. rc: %d", rc); + goto err; + } + + rc = bootenv_create(&(args.env_in)); + if (rc != 0) { + err_msg("Cannot create bootenv handle. rc: %d", rc); + goto err; + } + + argp_parse(&argp, argc, argv, ARGP_IN_ORDER, 0, &args); + if (args.action == ACT_ARGP_ERR) { + rc = -1; + goto err; + } + if (args.action == ACT_ARGP_ABORT) { + rc = 0; + goto out; + } + + if ((args.side == 0) || (args.side == -1)) + boot_volno = EXAMPLE_BOOTENV_VOL_ID_1; + else + boot_volno = EXAMPLE_BOOTENV_VOL_ID_2; + + if( args.x86 ) + rc = read_bootenv(args.file_in, env); + else + rc = ubi_read_bootenv(EXAMPLE_UBI_DEVICE, boot_volno, env); + if (rc != 0) { + goto err; + } + + if (args.action == ACT_LIST) { + rc = list_bootenv(env); + if (rc != 0) { + goto err; + } + goto out; + } + + rc = process_key_value(args.env_in, env); + if (rc != 0) { + goto err; + } + + if( args.x86 ) + rc = write_bootenv(args.file_in, env); + else + rc = ubi_write_bootenv(EXAMPLE_UBI_DEVICE, boot_volno, env); + if (rc != 0) { + goto err; + } + if( args.both ) /* No side specified, update both */ + rc = do_mirror(boot_volno); + + out: + err: + bootenv_destroy(&env); + bootenv_destroy(&(args.env_in)); + return rc; +} |