/* SPDX-License-Identifier: GPL-3.0-or-later */ /* * post_process.c * * Copyright (C) 2019 David Oberhollenzer <goliath@infraroot.at> */ #include "internal.h" #include <stdlib.h> #include <string.h> #include <assert.h> #include <stdio.h> #include <errno.h> static int alloc_inode_num_dfs(fstree_t *fs, tree_node_t *root) { bool has_subdirs = false; tree_node_t *it; size_t inum; for (it = root->data.dir.children; it != NULL; it = it->next) { if (S_ISDIR(it->mode)) { has_subdirs = true; break; } } if (has_subdirs) { for (it = root->data.dir.children; it != NULL; it = it->next) { if (S_ISDIR(it->mode)) { if (alloc_inode_num_dfs(fs, it)) return -1; } } } for (it = root->data.dir.children; it != NULL; it = it->next) { if (it->mode != FSTREE_MODE_HARD_LINK_RESOLVED) { if (SZ_ADD_OV(fs->unique_inode_count, 1, &inum)) goto fail_ov; if ((sizeof(size_t) > sizeof(sqfs_u32)) && inum > 0x0FFFFFFFFUL) { goto fail_ov; } it->inode_num = (sqfs_u32)inum; fs->unique_inode_count = inum; } } return 0; fail_ov: fputs("Too many inodes.\n", stderr); return -1; } static int resolve_hard_links_dfs(fstree_t *fs, tree_node_t *n) { tree_node_t *it; if (n->mode == FSTREE_MODE_HARD_LINK) { if (fstree_resolve_hard_link(fs, n)) goto fail_link; assert(n->mode == FSTREE_MODE_HARD_LINK_RESOLVED); it = n->data.target_node; if (S_ISDIR(it->mode) && it->data.dir.visited) goto fail_link_loop; } else if (S_ISDIR(n->mode)) { n->data.dir.visited = true; for (it = n->data.dir.children; it != NULL; it = it->next) { if (resolve_hard_links_dfs(fs, it)) return -1; } n->data.dir.visited = false; } return 0; fail_link: { char *path = fstree_get_path(n); fprintf(stderr, "Resolving hard link '%s' -> '%s': %s\n", path == NULL ? n->name : path, n->data.target, strerror(errno)); free(path); } return -1; fail_link_loop: { char *npath = fstree_get_path(n); char *tpath = fstree_get_path(it); fprintf(stderr, "Hard link loop detected in '%s' -> '%s'\n", npath == NULL ? n->name : npath, tpath == NULL ? it->name : tpath); free(npath); free(tpath); } return -1; } static void sort_recursive(tree_node_t *n) { n->data.dir.children = tree_node_list_sort(n->data.dir.children); for (n = n->data.dir.children; n != NULL; n = n->next) { if (S_ISDIR(n->mode)) sort_recursive(n); } } static file_info_t *file_list_dfs(tree_node_t *n) { if (S_ISREG(n->mode)) { n->data.file.next = NULL; return &n->data.file; } if (S_ISDIR(n->mode)) { file_info_t *list = NULL, *last = NULL; for (n = n->data.dir.children; n != NULL; n = n->next) { if (list == NULL) { list = file_list_dfs(n); if (list == NULL) continue; last = list; } else { last->next = file_list_dfs(n); } while (last->next != NULL) last = last->next; } return list; } return NULL; } static void map_inodes_dfs(fstree_t *fs, tree_node_t *n) { if (n->mode == FSTREE_MODE_HARD_LINK_RESOLVED) return; fs->inodes[n->inode_num - 1] = n; if (S_ISDIR(n->mode)) { for (n = n->data.dir.children; n != NULL; n = n->next) map_inodes_dfs(fs, n); } } static void reorder_hard_links(fstree_t *fs) { size_t i, j, tgt_idx; tree_node_t *it, *tgt; for (i = 0; i < fs->unique_inode_count; ++i) { if (!S_ISDIR(fs->inodes[i]->mode)) continue; it = fs->inodes[i]->data.dir.children; for (; it != NULL; it = it->next) { if (it->mode != FSTREE_MODE_HARD_LINK_RESOLVED) continue; tgt = it->data.target_node; tgt_idx = tgt->inode_num - 1; if (tgt_idx <= i) continue; /* TODO ? */ assert(!S_ISDIR(tgt->mode)); for (j = tgt_idx; j > i; --j) { fs->inodes[j] = fs->inodes[j - 1]; fs->inodes[j]->inode_num += 1; } fs->inodes[i] = tgt; /* XXX: the possible overflow is checked for during allocation */ tgt->inode_num = (sqfs_u32)(i + 1); ++i; } } } int fstree_post_process(fstree_t *fs) { size_t inum; sort_recursive(fs->root); if (resolve_hard_links_dfs(fs, fs->root)) return -1; fs->unique_inode_count = 0; if (alloc_inode_num_dfs(fs, fs->root)) return -1; if (SZ_ADD_OV(fs->unique_inode_count, 1, &inum)) goto fail_root_ov; if ((sizeof(size_t) > sizeof(sqfs_u32)) && inum > 0x0FFFFFFFFUL) goto fail_root_ov; fs->root->inode_num = (sqfs_u32)inum; fs->unique_inode_count = inum; fs->inodes = calloc(sizeof(fs->inodes[0]), fs->unique_inode_count); if (fs->inodes == NULL) { perror("Allocating inode list"); return -1; } map_inodes_dfs(fs, fs->root); reorder_hard_links(fs); fs->files = file_list_dfs(fs->root); return 0; fail_root_ov: fputs("Too many inodes, cannot allocate number for root.\n", stderr); return -1; }