From bd9133b1b12c4fa481ff9dd9d0572f363e7bfb59 Mon Sep 17 00:00:00 2001 From: David Oberhollenzer Date: Tue, 27 Oct 2020 00:45:19 +0100 Subject: documentation: move benchmark description to separate file Signed-off-by: David Oberhollenzer --- doc/parallelism.txt | 131 ---------------------------------------------------- 1 file changed, 131 deletions(-) (limited to 'doc/parallelism.txt') diff --git a/doc/parallelism.txt b/doc/parallelism.txt index 315a631..ca18add 100644 --- a/doc/parallelism.txt +++ b/doc/parallelism.txt @@ -107,134 +107,3 @@ add a lot for I/O bound compressors like zstd. If you have a better idea how to do this, please let me know. - - - 2) Benchmarks - ************* - - 2.1) How was the Benchmark Performed? - - An optimized build of squashfs-tools-ng was compiled and installed to a tmpfs: - - $ mkdir /dev/shm/temp - $ ln -s /dev/shm/temp out - $ ./autogen.sh - $ ./configure CFLAGS="-O3 -Ofast -march=native -mtune=native" \ - LDFLAGS="-O3 -Ofast" --prefix=$(pwd)/out - $ make -j install - $ cd out - - A SquashFS image to be tested was unpacked in this directory: - - $ ./bin/sqfs2tar > test.tar - - And then repacked as follows: - - $ time ./bin/tar2sqfs -j -c -f test.sqfs < test.tar - - - Out of 4 runs, the worst wall-clock time ("real") was used for comparison. - - - For the serial reference version, configure was re-run with the option - --without-pthread, the tools re-compiled and re-installed. - - - 2.2) What Image was Tested? - - A Debian image extracted from the Debian 10.2 LiveDVD for AMD64 with XFCE - was used. - - The input size and resulting output sizes turned out to be as follows: - - - As uncompressed tarball: ~6.5GiB (7,008,118,272) - - As LZ4 compressed SquashFS image: ~3.1GiB (3,381,751,808) - - As LZO compressed SquashFS image: ~2.5GiB (2,732,015,616) - - As zstd compressed SquashFS image: ~2.1GiB (2,295,017,472) - - As gzip compressed SquashFS image: ~2.3GiB (2,471,276,544) - - As lzma compressed SquashFS image: ~2.0GiB (2,102,169,600) - - As XZ compressed SquashFS image: ~2.0GiB (2,098,466,816) - - - The Debian image is expected to contain realistic input data for a Linux - file system and also provide enough data for an interesting benchmark. - - - 2.3) What Test System was used? - - AMD Ryzen 7 3700X - 32GiB DDR4 RAM - Fedora 31 - - - 2.4) Results - - The raw timing results are as follows: - - Jobs XZ lzma gzip LZO LZ4 zstd - serial 17m39.613s 16m10.710s 9m56.606s 13m22.337s 12.159s 9m33.600s - 1 17m38.050s 15m49.753s 9m46.948s 13m06.705s 11.908s 9m23.445s - 2 9m26.712s 8m24.706s 5m08.152s 6m53.872s 7.395s 5m 1.734s - 3 6m29.733s 5m47.422s 3m33.235s 4m44.407s 6.069s 3m30.708s - 4 5m02.993s 4m30.361s 2m43.447s 3m39.825s 5.864s 2m44.418s - 5 4m07.959s 3m40.860s 2m13.454s 2m59.395s 5.749s 2m16.745s - 6 3m30.514s 3m07.816s 1m53.641s 2m32.461s 5.926s 1m57.607s - 7 3m04.009s 2m43.765s 1m39.742s 2m12.536s 6.281s 1m43.734s - 8 2m45.050s 2m26.996s 1m28.776s 1m58.253s 6.395s 1m34.500s - 9 2m34.993s 2m18.868s 1m21.668s 1m50.461s 6.890s 1m29.820s - 10 2m27.399s 2m11.214s 1m15.461s 1m44.060s 7.225s 1m26.176s - 11 2m20.068s 2m04.592s 1m10.286s 1m37.749s 7.557s 1m22.566s - 12 2m13.131s 1m58.710s 1m05.957s 1m32.596s 8.127s 1m18.883s - 13 2m07.472s 1m53.481s 1m02.041s 1m27.982s 8.704s 1m16.218s - 14 2m02.365s 1m48.773s 1m00.337s 1m24.444s 9.494s 1m14.175s - 15 1m58.298s 1m45.079s 58.348s 1m21.445s 10.192s 1m12.134s - 16 1m55.940s 1m42.176s 56.615s 1m19.030s 10.964s 1m11.049s - - The file "benchmark.ods" contains those values, values derived from this and - charts depicting the results. - - - 2.5) Discussion - - Most obviously, the results indicate that LZ4, unlike the other compressors, - is clearly I/O bound and not CPU bound and doesn't benefit from parallelization - beyond 2-4 worker threads and even that benefit is marginal with efficiency - plummetting immediately. - - - The other compressors are clearly CPU bound. Speedup increases linearly until - about 8 cores, but with a slope < 1, as evident by efficiency linearly - decreasing and reaching 80% for 8 cores. - - A reason for this sub-linear scaling may be the choke point introduced by the - creation of fragment blocks, that *requires* a synchronization. To test this - theory, a second benchmark should be performed with fragment block generation - completely disabled. This requires a new flag to be added to tar2sqfs (and - also gensquashfs). - - - Using more than 8 jobs causes a much slower increase in speedup and efficency - declines even faster. This is probably due to the fact that the test system - only has 8 physical cores and beyond that, SMT has to be used. - - - It should also be noted that the thread pool compressor with only a single - thread turns out to be *slightly* faster than the serial reference - implementation. A possible explanation for this might be that the fragment - blocks are actually assembled in the main thread, in parallel to the worker - that can still continue with other data blocks. Because of this decoupling - there is in fact some degree of parallelism, even if only one worker thread - is used. - - - As a side effect, this benchmark also produces some insights into the - compression ratio and throughput of the supported compressors. Indicating that - for the Debian live image, XZ clearly provides the highest data density, while - LZ4 is clearly the fastest compressor available. - - The throughput of the zstd compressor is comparable to gzip, while the - resulting compression ratio is closer to LZMA. - - Repeating the benchmark without tail-end-packing and with fragments completely - disabled would also show the effectiveness of tail-end-packing and fragment - packing as a side effect. -- cgit v1.2.3