#ifndef __BITOPS_H__ #define __BITOPS_H__ /* * Non-atomic bitops. */ #include #define BITS_PER_LONG __LONG_WIDTH__ #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) #define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_LONG) #define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG)) #define BIT_WORD(nr) ((nr) / BITS_PER_LONG) #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) static inline void __set_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p |= mask; } static inline void set_bit(int nr, volatile unsigned long *addr) { __set_bit(nr, addr); } static inline void __clear_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p &= ~mask; } static inline void clear_bit(int nr, volatile unsigned long *addr) { __clear_bit(nr, addr); } static inline bool test_bit(int nr, const volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); return (*p & mask) != 0; } /* Sets and returns original value of the bit */ static inline int test_and_set_bit(int nr, volatile unsigned long *addr) { if (test_bit(nr, addr)) return 1; set_bit(nr, addr); return 0; } /** * fls - find last (most-significant) bit set * @x: the word to search * * This is defined the same way as ffs. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. */ static inline int fls(int x) { int r = 32; if (!x) return 0; if (!(x & 0xffff0000u)) { x <<= 16; r -= 16; } if (!(x & 0xff000000u)) { x <<= 8; r -= 8; } if (!(x & 0xf0000000u)) { x <<= 4; r -= 4; } if (!(x & 0xc0000000u)) { x <<= 2; r -= 2; } if (!(x & 0x80000000u)) { x <<= 1; r -= 1; } return r; } /** * __ffs - find first bit in word. * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static inline unsigned long __ffs(unsigned long word) { int num = 0; #if BITS_PER_LONG == 64 if ((word & 0xffffffff) == 0) { num += 32; word >>= 32; } #endif if ((word & 0xffff) == 0) { num += 16; word >>= 16; } if ((word & 0xff) == 0) { num += 8; word >>= 8; } if ((word & 0xf) == 0) { num += 4; word >>= 4; } if ((word & 0x3) == 0) { num += 2; word >>= 2; } if ((word & 0x1) == 0) num += 1; return num; } unsigned long _find_next_bit(const unsigned long *addr, unsigned long nbits, unsigned long start, unsigned long invert); /* * Find the next set bit in a memory region. */ static inline unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { return _find_next_bit(addr, size, offset, 0UL); } static inline unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { return _find_next_bit(addr, size, offset, ~0UL); } #endif